• leetCode 84.Largest Rectangle in Histogram (最大矩形直方图) 解题思路和方法


    Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.


    Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].


    The largest rectangle is shown in the shaded area, which has area = 10 unit.

    For example,
    Given height = [2,1,5,6,2,3],
    return 10.

    思路:此题还是有一些难度的,刚開始想的双指针。前后扫描,可是每次求最小的高度的时候都须要遍历一次,效率上不是非常高。为o(n2)。

    代码例如以下:

    public class Solution {
        public int largestRectangleArea(int[] height) {
        	
            int max = 0;//最大值
            int i = 0;//左指针
            int j = height.length - 1;//右指针
            boolean isMinChange = true;
    
            //双指针扫描
            while(i <= j){
            	int minHeight = Integer.MAX_VALUE;//范围内最小值
            	if(isMinChange){//最小值是否改变
            		isMinChange = false;
            		//又一次得到最小值
            		for(int k = i ; k <= j;k++){
                        if(height[k] < minHeight){
                            minHeight = height[k];
                        }
                    }
            	}
            	//面积
                int area = (j - i + 1)*minHeight;
                if(max < area){
                    max = area;
                }
                if(i == j){//假设相等,则结束
                	break;
                }
                if(height[i] < height[j]){//左指针添加,直到比当前大
                	int k = i;
                	while(k <= j && height[k] <= height[i]){
                		if(height[k] == minHeight){//推断最小值是否改变
                			isMinChange = true;
                		}
                		k++;
                	}
                    i = k;
                }else{//右指针减小,直到比当前大
                	int k = j;
                	while( k >= i && height[k] <= height[j]){
                		if(height[k] == minHeight){//推断最小值是否改变
                			isMinChange = true;
                		}
                		k--;
                	}
                	j = k;	
                }
            } 
            return max;
        }
    }


    解法上过不了OJ,所以仅仅能在网上參看资料。最后找到资料例如以下。是用栈解决的。

    public class Solution {
        public int largestRectangleArea(int[] height) {
        	if (height == null || height.length == 0) return 0;
        	
            Stack<Integer> stHeight = new Stack<Integer>();
            Stack<Integer> stIndex = new Stack<Integer>();
            int max = 0;
            
            for(int i = 0; i < height.length; i++){
                if(stHeight.isEmpty() || height[i] > stHeight.peek()){
                    stHeight.push(height[i]);
                    stIndex.push(i);
                }else if(height[i] < stHeight.peek()){
                	int lastIndex = 0;
                	while(!stHeight.isEmpty() && height[i] < stHeight.peek()){
                		lastIndex = stIndex.pop();
                		int area = stHeight.pop()*(i - lastIndex);
                		if(max < area){
                			max = area;
                		}
                	}
                	stHeight.push(height[i]);
                	stIndex.push(lastIndex);
                }
            }
            while(!stHeight.isEmpty()){
            	int area = stHeight.pop()*(height.length - stIndex.pop());
            	max = max < area ? area:max;
            }
    
    		return max;
        }
    }


  • 相关阅读:
    判断两个链表是否相交
    【转】TCP连接突然断开的处理方法
    【转】TCP/IP协议——ARP详解
    HTTP协议COOKIE和SESSION有什么区别
    【转】K-Means聚类算法原理及实现
    【转】机器学习实战之K-Means算法
    unity3d 调用Start 注意
    u3d 加载PNG做 UI图片
    Opengl的gl_NormalMatrix
    OpenGL 遮挡查询
  • 原文地址:https://www.cnblogs.com/wzjhoutai/p/7228823.html
Copyright © 2020-2023  润新知