Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
给定一个三角形,找出从顶到底的最小路径和,每一步可以从上一行移动到下一行相邻的数字
思路:由底向上依次获取到第i层的最小值。最终顶层节点值就是最小路径和
1 public int minimumTotal(List<List<Integer>> triangle) { 2 if(triangle.size() == 0) return -1; 3 if(triangle.size() == 1) return triangle.get(0).get(0); 4 for(int i=triangle.size()-2;i>=0;i--){ 5 for(int j=0;j<=i;j++){ 6 int minValue = Math.min(triangle.get(i+1).get(j),triangle.get(i+1).get(j+1)) + triangle.get(i).get(j); 7 triangle.get(i).set(j,minValue); 8 } 9 } 10 return triangle.get(0).get(0); 11 }