[PA=E, PE=P
]
按照定义,P 即为 A 的逆矩阵。矩阵乘法可以看作是对右边矩阵的一个线性变换,即:A 经过 P 的线性变换变成了 E,E 经过同样的线性变换变成了 P。因此,只需要在高斯消元 A 矩阵,将 A 变成单位矩阵的同时,维护一个单位矩阵,做与 A 完全相同的线性变换即可得到逆矩阵。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
typedef long long LL;
LL fpow(LL a, LL b) {
LL ret = 1 % mod;
for (; b; b >>= 1, a = a * a % mod) {
if (b & 1) {
ret = ret * a % mod;
}
}
return ret;
}
struct matrix {
vector<vector<LL>> mat;
int n;
matrix(int _n) {
n = _n;
mat.resize(n + 1, vector<LL>(n + 1, 0));
}
void identify() {
for (int i = 1; i <= n; i++) {
mat[i][i] = 1;
}
}
vector<LL>& operator[](int x) {
return mat[x];
}
void add(int i, int j, LL val) {
for (int k = 1; k <= n; k++) {
mat[i][k] = (mat[i][k] + mat[j][k] * val % mod + mod) % mod;
}
}
void multiply(int i, LL val) {
for (int j = 1; j <= n; j++) {
mat[i][j] = (mat[i][j] * val % mod + mod) % mod;
}
}
void print() {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cout << mat[i][j] << " ";
}
cout << endl;
}
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int n;
cin >> n;
matrix a(n), b(n);
b.identify();
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> a[i][j];
}
}
auto gauss = [&]() -> bool {
for (int i = 1; i <= n; i++) {
if (a[i][i] == 0) {
for (int j = i + 1; j <= n; j++) {
if (a[j][i] != 0) {
swap(a[i], a[j]);
swap(b[i], b[j]);
break;
}
}
}
if (a[i][i] == 0) {
return 0;
}
LL inv = fpow(a[i][i], mod - 2);
a.multiply(i, inv);
b.multiply(i, inv);
for (int j = i + 1; j <= n; j++) {
b.add(j, i, -a[j][i]);
a.add(j, i, -a[j][i]);
}
}
for (int i = n - 1; i >= 1; i--) {
for (int j = i + 1; j <= n; j++) {
b.add(i, j, -a[i][j]);
a.add(i, j, -a[i][j]);
}
}
return 1;
};
if (gauss() == 1) {
b.print();
} else {
cout << "No Solution" << endl;
}
return 0;
}