• 【模板】分治 FFT


    题目大意:给定长度为 (n - 1) 的序列 (g),求 (f) 序列,其中 (f)

    [f[i]=sum_{j=1}^{i} f[i-j] g[j] ]

    学会了分治 (fft)
    发现这个式子中也含有卷积,但是这是一个递推式,即:(f) 数组是未知的。
    考虑分治策略,即:假设已经算出区间 ([l, mid])(f) 值,现在要计算区间 ([mid + 1, r])(f)
    考虑左半部分对右半部分的贡献,对于 $$x in [mid + 1, r], contribution(left ightarrow x) = sumlimits_{i = l}^{mid}f(i)*g(x - i)$$
    通过下标转换得:

    [egin{aligned} f(x) &=sum_{i=l}^{mid} f(i) * g(x-i) \ &=sum_{i=0}^{mid-l} f(i+l) * g(x-l-i) end{aligned} ]

    换元得

    [foo(i)=f(i+l), bar(i)=g(i) ]

    式子变成了

    [f(x)=foo(x-l)=sum_{i=0}^{mid-l} A(i) * B(x-l-i) ]

    即:卷积序列的第 (x - l) 项为 (x) 的贡献。

    注意:对于 (g) 来说,下标不能移动到 (0) 开始,因为 (f) 数组本身下标就是从 (0) 开始的,这就意味着 (g[0] = 0),即:输入从 (g[1]) 开始。
    另外,关于c11的 lambda 表达式,对于 [=] 来说,捕获到的变量均为其常量的副本,这个值仅仅由该变量的初始化决定,不会改变。

    // update at 2019.10.11
    代码如下

    #include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long LL;
    
    const LL mod = 998244353, g = 3, ig = 332748118;
    
    inline LL fpow(LL a, LL b) {
    	LL ret = 1 % mod;
    	for (; b; b >>= 1, a = a * a % mod) {
    		if (b & 1) {
    			ret = ret * a % mod;
    		}
    	}
    	return ret;
    }
    
    void ntt(vector<LL> &v, vector<int> &rev, int opt) {
    	int tot = v.size();
    	for (int i = 0; i < tot; i++) if (i < rev[i]) swap(v[i], v[rev[i]]);
    	for (int mid = 1; mid < tot; mid <<= 1) {
    		LL wn = fpow(opt == 1 ? g : ig, (mod - 1) / (mid << 1));
    		for (int j = 0; j < tot; j += mid << 1) {
    			LL w = 1;
    			for (int k = 0; k < mid; k++) {
    				LL x = v[j + k], y = v[j + mid + k] * w % mod;
    				v[j + k] = (x + y) % mod, v[j + mid + k] = (x - y + mod) % mod;
    				w = w * wn % mod;
    			}
    		}
    	}
    	if (opt == -1) {
    		LL itot = fpow(tot, mod - 2);
    		for (int i = 0; i < tot; i++) v[i] = v[i] * itot % mod;
    	}
    }
    vector<LL> convolution(vector<LL> &a, int sa, int cnta, vector<LL> &b, int sb, int cntb, const function<LL(LL, LL)> &calc) {
    	int bit = 0, tot = 1;
    	while (tot <= 2 * max(cnta, cntb)) bit++, tot <<= 1;
    	vector<int> rev(tot);
    	for (int i = 0; i < tot; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << (bit - 1);
    	vector<LL> foo(tot), bar(tot);
    	for (int i = 0, j = sa; i < cnta; i++, j++) foo[i] = a[j];
    	for (int i = 0, j = sb; i < cntb; i++, j++) bar[i] = b[j];
    	ntt(foo, rev, 1), ntt(bar, rev, 1);
    	for (int i = 0; i < tot; i++) foo[i] = calc(foo[i], bar[i]);
    	ntt(foo, rev, -1);
    	return foo;
    }
    void cdq(int l, int r, vector<LL> &f, vector<LL> &w) {
    	if (l == r) return;
    	int mid = l + r >> 1;
    	cdq(l, mid, f, w);
    	int sz = r - l + 1;
    	vector<LL> h = convolution(f, l, mid - l + 1, w, 0, sz, [&](LL a, LL b) {return a * b % mod;});
    	for (int i = mid + 1; i <= r; i++) f[i] = (f[i] + h[i - l]) % mod;
    	cdq(mid + 1, r, f, w);
    }
    
    int main() {
    	ios::sync_with_stdio(false);
    	cin.tie(0), cout.tie(0);
    	int n;
    	cin >> n;
    	vector<LL> f(n), w(n);
    	f[0] = 1;
    	for (int i = 1; i < n; i++) {
    		cin >> w[i];
    	}
    	cdq(0, n - 1, f, w);
    	for (auto v : f) {
    		cout << v << " ";
    	}
    	return 0;
    }
    
  • 相关阅读:
    游戏对战练习
    扩展属性 配置文件
    数据操作类:增删改查(三大类)
    作业
    泛型集合
    Linux下查看文件和文件夹大小
    reids客户端 redis-cli用法
    生产环境下JAVA进程高CPU占用故障排查
    MySQL主从复制与读写分离
    最全面 Nginx 入门教程 + 常用配置解析
  • 原文地址:https://www.cnblogs.com/wzj-xhjbk/p/11437578.html
Copyright © 2020-2023  润新知