FFT 的本质是在 (O(nlogn)) 的时间内进行点值表达和系数表达之间的转换,并在 (O(n)) 的时间内计算结果,故总时间复杂度为 (O(logn))。
FFT注意事项
- 由于 tot 采用的是倍增的方式,因此实际内存开销可能是 (2(n+m))。
- 多项式的项数和次数不同。
update at 2019.10.11
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 998244353, g = 3, ig = 332748118;
inline LL fpow(LL a, LL b) {
LL ret = 1 % mod;
for (; b; b >>= 1, a = a * a % mod) {
if (b & 1) {
ret = ret * a % mod;
}
}
return ret;
}
void ntt(vector<LL> &v, vector<int> &rev, int opt) {
int tot = v.size();
for (int i = 0; i < tot; i++) if (i < rev[i]) swap(v[i], v[rev[i]]);
for (int mid = 1; mid < tot; mid <<= 1) {
LL wn = fpow(opt == 1 ? g : ig, (mod - 1) / (mid << 1));
for (int j = 0; j < tot; j += mid << 1) {
LL w = 1;
for (int k = 0; k < mid; k++) {
LL x = v[j + k], y = v[j + mid + k] * w % mod;
v[j + k] = (x + y) % mod, v[j + mid + k] = (x - y + mod) % mod;
w = w * wn % mod;
}
}
}
if (opt == -1) {
LL itot = fpow(tot, mod - 2);
for (int i = 0; i < tot; i++) v[i] = v[i] * itot % mod;
}
}
vector<LL> convolution(vector<LL> &a, int cnta, vector<LL> &b, int cntb, const function<LL(LL, LL)> &calc) {
int bit = 0, tot = 1;
while (tot <= 2 * max(cnta, cntb)) bit++, tot <<= 1;
vector<int> rev(tot);
for (int i = 0; i < tot; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << (bit - 1);
vector<LL> foo(tot), bar(tot);
for (int i = 0; i < cnta; i++) foo[i] = a[i];
for (int i = 0; i < cntb; i++) bar[i] = b[i];
ntt(foo, rev, 1), ntt(bar, rev, 1);
for (int i = 0; i < tot; i++) foo[i] = calc(foo[i], bar[i]);
ntt(foo, rev, -1);
return foo;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
vector<LL> a(n + 1), b(m + 1);
for (int i = 0; i <= n; i++) {
cin >> a[i];
}
for (int i = 0; i <= m; i++) {
cin >> b[i];
}
vector<LL> c = convolution(a, n + 1, b, m + 1, [&](LL a, LL b) {
return a * b % mod;
});
for (int i = 0; i <= n + m; i++) {
cout << c[i] << " ";
}
return 0;
}