• 转载一份分类、回归、排序的评价指标


      模型评估主要分为离线评估和在线评估。针对分类、排序、回归、序列预测等不同类型的机器学习问题,模型评估指标的选择也有所不同。要评估模型的效果,就需要将模型预测结果f(X)和真实标注Y进行比较,评估指标定义为f(X)和Y的函数:score = metric(f(X),Y)。模型的好坏是相对的,在对比不同的模型效果时,使用不同评估指标往往会导致不同的结论。

      通常离线评估使用的是机器学习评估指标,在线评估使用的是业务指标。如果离线指标和在线指标不同,则可能会出现离线指标变好而在线指标变差的现象。所以,在一个新的问题开始的初期,都会进行多轮模型迭代,来探索与线上业务指标一致的线下指标,尽可能是线下指标的变化趋势与线上指标一致。没有一个跟线上一致的线下指标,那么这个线下指标没有参考价值,想判断模型是否有效,只能线上实验,这样就成本太高了。

      1.分类问题模型评估指标:

       

      TP表示实际标签为正,预测标签也为正,FP表示实际标签为负,预测标签却为正,TN表示实际标签为负,预测标签也为负,FN表示实际标签为正,预测标签却为负,样本总数TP+FP+FN+TN

      准确率(acc) = (TP+TN)/(TP+FP+FN+TN)

      精确率(P)    = TP/(TP+FP)

      召回率(R)    = TP/(TP+FN)

      ROC与AUC:

       不管你是不是年薪30W的算法工程师,都要了解这几个模型评估指标

       ROC中文名称接收者操作特征(Receiver Operating Characteristic),ROC曲线不需要设定阈值,纵坐标是真正率,横坐标是假正率,

      真正率(TPR)=TP/(TP+FN)

      假正率(FPR)=FP/(FP+TN)

      AUC是ROC曲线下的面积,取值越大说明模型越可能将正样本排在负样本前面,AUC对预测概率不敏感。

      对数损失(Logistics logloss)是对预测概率的似然估计:logloss = -logP(Y|X),对数损失最小化本质上是利用样本中的已知分布,求解导致这种分布的最佳模型参数,使这种分布出现的概率最大。logloss衡量的是预测概率分布和真实概率分布的差异性,取值越小越好。与AUC不同,logloss对预测概率敏感。

      2.回归问题模型评估指标:

      平均绝对误差,也叫L1范数损失,公式:MAE = 1/N·Σ|Yi-Pi|,其中,N为样本数,Yi为第i条样本的真实值,Pi为第i条样本的预测值。模型使用MAE作为损失函数是对数据分布的中值进行拟合。但某些模型如XGBoost必须要求损失函数有二阶导数,所以不能直接优化MAE。

      均方根误差的公式:RMSE =√( 1/N·Σ|Yi-Pi|2),RMSE代表的是预测值与真实值差值的样本标准差。和MAE对比,RMSE对大误差样本有更大的惩罚,但它对离群点敏感,健壮性不如MAE。模型使用RMSE作为损失函数是对数据分布的平均值进行拟合。

      

       3 排序问题模型评估指标:

      平均准确率均值(MAP)和 归一化贴现累计收益(NDCG)

  • 相关阅读:
    IIS日志字段详解
    Linux CPU监控指标
    PMP 质量管理新7张图
    PMP 质量管理7张图 很形象
    【MVC model 验证失效 】【Unexpected token u in JSON at position 0】【jquery-plugin-validation】
    VS 忽略文件 Git 向远程添加问题
    .Net Core 知识了解:一跨平台的奥秘
    ios 时间解析 差8个小时
    百度定位转腾讯定位
    需求评审会议分析
  • 原文地址:https://www.cnblogs.com/wzdLY/p/9771460.html
Copyright © 2020-2023  润新知