输入格式
一行三个整数$n,m,k$。
输出格式
一行一个整数表示答案。对$998244353$取模。
样例
样例输入
3 7 3
样例输出
6
数据范围与提示
对于10%的数据,$1leqslant n,m,kleqslant 10$。
对于40%的数据,$1leqslant n,m,kleqslant 1,000$。
对于70%的数据,$1leqslant n,m,kleqslant {10}^5$。
对于100%的数据,$1leqslant nleqslant {10}^9$,$1leqslant n,kleqslant {10}^7$。
题解
$20\%$算法:
如果$n>m$或$n<m imes k$那么一定没有方案,直接$puts("0");$即可。
时间复杂度:$Theta(1)$。
期望的分:$0$分。
实际的分:$20$分。
$10\%$算法:
爆搜,枚举所有情况即可。
时间复杂度:$Theta(n^k)$。
期望的分:$10$分。
实际的分:$10$分。
$40\%$算法:
考虑$DP$,设$dp[i][j]$为到第$i$个城市,一共用了$j$个建设队的方案数。
那么可以列出状态转移方程:$dp[i][j]=sum limits_{k=1}^{min(k,m)}dp[i-1][j-k]$。
时间复杂度:$Theta(n^3)$。
期望的分:$40$分。
实际的分:$40$分。
$100\%$算法:
考虑容斥,挡板法。
这个问题可以转化为,在$m$个物品中插入$n-1$个挡板,挡板不能插在一起,那么方案数就是$C_{m-1}^{n-1}$。
现在需要减去不合法的方案数,设至少有$i$个城市不合法,那么方案数就是$C_n^i imes C_{m-i imes k-1}^{n-1}$,可以理解为,我先将那$i imes k$个不合法的扔掉,再在$m-i imes k$里面选合法的即可。
利用容斥统计答案即可。
时间复杂度:$Theta(m)$。
期望的分:$100$分。
实际的分:$100$分。
代码时刻
$20\%$算法:
#include<bits/stdc++.h>
using namespace std;
int n,m,k;
int main()
{
scanf("%d%d%d",&n,&m,&k);
if(n>m||n*k<m)puts("0");
return 0;
}
$40\%$算法:
#include<bits/stdc++.h>
using namespace std;
int dp[7000][7000];
int main()
{
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=k;i++)dp[1][i]=1;
for(int i=2;i<=n;i++)
for(int j=i;j<=m;j++)
for(int l=1;l<=min(k,m);l++)
dp[i][j]=(dp[i][j]+dp[i-1][j-l])%998244353;
cout<<dp[n][m]<<endl;
return 0;
}
$100\%$算法:
#include<bits/stdc++.h>
using namespace std;
long long n,m,k;
long long jc[100000001],qsm[100000001];
long long ans;
long long qpow(long long x,long long y)
{
long long res=1;
while(y)
{
if(y&1)res=res*x%998244353;
x=x*x%998244353;
y>>=1;
}
return res;
}
void pre_work()
{
jc[0]=1;
for(int i=1;i<=m;i++)
jc[i]=1LL*jc[i-1]*i%998244353;
for(int i=0;i<=m;i++)
qsm[i]=qpow(jc[i],998244351)%998244353;
}
long long cm(long long x,long long y)
{
return jc[x]*qsm[y]%998244353*qsm[x-y]%998244353;
}
long long lucas(long long x,long long y)
{
if(!y)return 1;
return cm(x%998244353,y%998244353)*lucas(x/998244353,y/998244353)%998244353;
}
int main()
{
scanf("%lld%lld%lld",&n,&m,&k);
if(n>m||n*k<m){puts("0");return 0;}
pre_work();
long long flag=-1;
ans=jc[m-1]*qsm[n-1]%998244353*qsm[m-n]%998244353;
for(int i=1;i<=n;i++)
{
if(m-i*k<n)continue;
ans=(ans+flag*lucas(n,i)%998244353*lucas(m-i*k-1,n-1)+998244353)%998244353;
flag=-flag;
}
printf("%lld",(ans+998244353)%998244353);
return 0;
}
rp++