• scrapy-redis使用以及剖析


    scrapy-redis是一个基于redis的scrapy组件,通过它可以快速实现简单分布式爬虫程序,该组件本质上提供了三大功能:

    • scheduler - 调度器
    • dupefilter - URL去重规则(被调度器使用)
    • pipeline - 数据持久化

    Scrapy-redis提供了下面四种组件(components):(四种组件意味着这四个模块都要做相应的修改)

    • Scheduler
    • Duplication Filter
    • Item Pipeline
    • Base Spider

    scrapy-redis组件

    scrapy-redis架构

    URL去重
    定义去重规则(被调度器调用并应用)
     
        a. 内部会使用以下配置进行连接Redis
     
            # REDIS_HOST = 'localhost'                            # 主机名
            # REDIS_PORT = 6379                                   # 端口
            # REDIS_URL = 'redis://user:pass@hostname:9001'       # 连接URL(优先于以上配置)
            # REDIS_PARAMS  = {}                                  # Redis连接参数             默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
            # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块  默认:redis.StrictRedis
            # REDIS_ENCODING = "utf-8"                            # redis编码类型             默认:'utf-8'
         
        b. 去重规则通过redis的集合完成,集合的Key为:
         
            key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}
            默认配置:
                DUPEFILTER_KEY = 'dupefilter:%(timestamp)s'
                  
        c. 去重规则中将url转换成唯一标示,然后在redis中检查是否已经在集合中存在
         
            from scrapy.utils import request
            from scrapy.http import Request
             
            req = Request(url='http://www.cnblogs.com/wupeiqi.html')
            result = request.request_fingerprint(req)
            print(result) # 8ea4fd67887449313ccc12e5b6b92510cc53675c
             
             
            PS:
                - URL参数位置不同时,计算结果一致;
                - 默认请求头不在计算范围,include_headers可以设置指定请求头
                示例:
                    from scrapy.utils import request
                    from scrapy.http import Request
                     
                    req = Request(url='http://www.baidu.com?name=8&id=1',callback=lambda x:print(x),cookies={'k1':'vvvvv'})
                    result = request.request_fingerprint(req,include_headers=['cookies',])
                     
                    print(result)
                     
                    req = Request(url='http://www.baidu.com?id=1&name=8',callback=lambda x:print(x),cookies={'k1':666})
                     
                    result = request.request_fingerprint(req,include_headers=['cookies',])
                     
                    print(result)
             
    """
    # Ensure all spiders share same duplicates filter through redis.
    # DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
    
    调度器
    """
    调度器,调度器使用PriorityQueue(有序集合)、FifoQueue(列表)、LifoQueue(列表)进行保存请求,并且使用RFPDupeFilter对URL去重
    
        a. 调度器
            SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'          # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
            SCHEDULER_QUEUE_KEY = '%(spider)s:requests'                         # 调度器中请求存放在redis中的key
            SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat"                  # 对保存到redis中的数据进行序列化,默认使用pickle
            SCHEDULER_PERSIST = True                                            # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
            SCHEDULER_FLUSH_ON_START = True                                     # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
            SCHEDULER_IDLE_BEFORE_CLOSE = 10                                    # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
            SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter'                  # 去重规则,在redis中保存时对应的key
            SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类
    
    
    """
    # Enables scheduling storing requests queue in redis.
    SCHEDULER = "scrapy_redis.scheduler.Scheduler"
    
    # Default requests serializer is pickle, but it can be changed to any module
    # with loads and dumps functions. Note that pickle is not compatible between
    # python versions.
    # Caveat: In python 3.x, the serializer must return strings keys and support
    # bytes as values. Because of this reason the json or msgpack module will not
    # work by default. In python 2.x there is no such issue and you can use
    # 'json' or 'msgpack' as serializers.
    # SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat"
    
    # Don't cleanup redis queues, allows to pause/resume crawls.
    # SCHEDULER_PERSIST = True
    
    # Schedule requests using a priority queue. (default)
    # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'
    
    # Alternative queues.
    # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue'
    # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue'
    
    # Max idle time to prevent the spider from being closed when distributed crawling.
    # This only works if queue class is SpiderQueue or SpiderStack,
    # and may also block the same time when your spider start at the first time (because the queue is empty).
    # SCHEDULER_IDLE_BEFORE_CLOSE = 10
    
    数据持久化
    2. 定义持久化,爬虫yield Item对象时执行RedisPipeline
    
        a. 将item持久化到redis时,指定key和序列化函数
    
            REDIS_ITEMS_KEY = '%(spider)s:items'
            REDIS_ITEMS_SERIALIZER = 'json.dumps'
    
        b. 使用列表保存item数据
    
    起始URL相关
    """
    起始URL相关
    
        a. 获取起始URL时,去集合中获取还是去列表中获取?True,集合;False,列表
            REDIS_START_URLS_AS_SET = False    # 获取起始URL时,如果为True,则使用self.server.spop;如果为False,则使用self.server.lpop
        b. 编写爬虫时,起始URL从redis的Key中获取
            REDIS_START_URLS_KEY = '%(name)s:start_urls'
    
    """
    # If True, it uses redis' ``spop`` operation. This could be useful if you
    # want to avoid duplicates in your start urls list. In this cases, urls must
    # be added via ``sadd`` command or you will get a type error from redis.
    # REDIS_START_URLS_AS_SET = False
    
    # Default start urls key for RedisSpider and RedisCrawlSpider.
    # REDIS_START_URLS_KEY = '%(name)s:start_urls'
    
    scrapy-redis示例
    1 # DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
     2 #
     3 #
     4 # from scrapy_redis.scheduler import Scheduler
     5 # from scrapy_redis.queue import PriorityQueue
     6 # SCHEDULER = "scrapy_redis.scheduler.Scheduler"
     7 # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'          # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
     8 # SCHEDULER_QUEUE_KEY = '%(spider)s:requests'                         # 调度器中请求存放在redis中的key
     9 # SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat"                  # 对保存到redis中的数据进行序列化,默认使用pickle
    10 # SCHEDULER_PERSIST = True                                            # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
    11 # SCHEDULER_FLUSH_ON_START = False                                    # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
    12 # SCHEDULER_IDLE_BEFORE_CLOSE = 10                                    # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
    13 # SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter'                  # 去重规则,在redis中保存时对应的key
    14 # SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类
    15 #
    16 #
    17 #
    18 # REDIS_HOST = '10.211.55.13'                           # 主机名
    19 # REDIS_PORT = 6379                                     # 端口
    20 # # REDIS_URL = 'redis://user:pass@hostname:9001'       # 连接URL(优先于以上配置)
    21 # # REDIS_PARAMS  = {}                                  # Redis连接参数             默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
    22 # # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块  默认:redis.StrictRedis
    23 # REDIS_ENCODING = "utf-8"                              # redis编码类型             默认:'utf-8'
    24 
    25 配置文件
    
    配置文件
    
    1 import scrapy
     2 
     3 
     4 class ChoutiSpider(scrapy.Spider):
     5     name = "chouti"
     6     allowed_domains = ["chouti.com"]
     7     start_urls = (
     8         'http://www.chouti.com/',
     9     )
    10 
    11     def parse(self, response):
    12         for i in range(0,10):
    13             yield
    
    爬虫文件
    
    我唯一的害怕,是你们已经不相信了——不相信规则能战胜潜规则,不相信学场有别于官场,不相信学术不等于权术,不相信风骨远胜于媚骨,在这个怀疑的时代,我们仍然要有信仰,信仰努力而不是运气,这个世界虽然不够纯洁,但我仍然相信它还不能埋没真正有才华的人
  • 相关阅读:
    Lucene.net系列六 search 下
    Lucene.net 系列三 index 中
    初识Antlr
    Antlr首页计算机器实验成功
    C#语言学习之旅(1):C#基础
    NeatUpload js 判断上传文件的大小是否超过了空间的大小
    对XML的各种操作
    多表求和
    xmlhttp 最简单的无刷新
    xml 查询
  • 原文地址:https://www.cnblogs.com/wyh0923/p/14005103.html
Copyright © 2020-2023  润新知