problem
给出一个无向图,每条边有一种颜色。每种颜色都构成一个森林。需要完成以下操作。
- 修改点权
- 修改边的颜色
- 询问某种颜色的森林中某条路径上点权最大值
solution
颜色数量不超过10,所以对于每种颜色建一棵LCT。
修改点权,就对每种颜色的LCT都修改。
修改边的颜色,就将原来颜色的LCT中这条边断掉,在新颜色的LCT中加上。这里需要判断加入边后是否还满足是森林,所以需要统计每个点连出去的各种颜色点的数量。还要判断是否会形成环,只要判断原来两点是否在同一棵树中。
询问操作则直接询问即可。
code
/*
* @Author: wxyww
* @Date: 2020-02-26 07:36:20
* @Last Modified time: 2020-02-26 09:21:59
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<bitset>
#include<cstring>
#include<algorithm>
#include<string>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long ll;
#define ls TR[cur].ch[0]
#define rs TR[cur].ch[1]
const int N = 10010;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
struct LCT {
struct node {
int ch[2],val,rev,mx,pre;
}TR[N];
int isroot(int cur) {
return TR[TR[cur].pre].ch[0] != cur && TR[TR[cur].pre].ch[1] != cur;
}
int getwh(int cur) {
return TR[TR[cur].pre].ch[1] == cur;
}
void up(int cur) {
TR[cur].mx = max(TR[ls].mx,max(TR[rs].mx,TR[cur].val));
}
void pushdown(int cur) {
if(TR[cur].rev) {
TR[ls].rev ^= 1;TR[rs].rev ^= 1;
swap(ls,rs);
TR[cur].rev = 0;
}
}
void rotate(int cur) {
int fa = TR[cur].pre,gr = TR[fa].pre,f = getwh(cur);
if(!isroot(fa)) TR[gr].ch[getwh(fa)] = cur;
TR[cur].pre = gr;
if(TR[cur].ch[f ^ 1]) TR[TR[cur].ch[f ^ 1]].pre = fa;
TR[fa].ch[f] = TR[cur].ch[f ^ 1];
TR[fa].pre = cur;TR[cur].ch[f ^ 1] = fa;
up(fa);up(cur);
}
int sta[N],top;
void splay(int cur) {
sta[++top] = cur;
for(int i = cur;!isroot(i);i = TR[i].pre) {
// printf("%d
",i);
sta[++top] = TR[i].pre;
}
while(top) pushdown(sta[top--]);
while(!isroot(cur)) {
if(!isroot(TR[cur].pre)) {
if(getwh(TR[cur].pre) == getwh(cur)) rotate(TR[cur].pre);
else rotate(cur);
}
rotate(cur);
}
}
void access(int cur) {
for(int t = 0;cur;t = cur,cur = TR[cur].pre) {
splay(cur);rs = t;up(cur);
}
}
void makeroot(int cur) {
access(cur);
splay(cur);
TR[cur].rev ^= 1;
}
void link(int x,int y) {
// printf("%d
",x);
makeroot(x);TR[x].pre = y;
}
void cut(int x,int cur) {
makeroot(x);access(cur);
splay(cur);
ls = TR[ls].pre = 0;
up(cur);
}
void update(int cur,int c) {
makeroot(cur);TR[cur].val = c;
up(cur);
}
int find(int cur) {
access(cur);splay(cur);
while(ls) cur = ls;
return cur;
}
int query(int x,int y) {
if(find(x) != find(y)) return -1;
makeroot(x);access(y);splay(y);
return TR[y].mx;
}
}t[10];
#define pi pair<int,int>
map<pi,int>ma;
int num[N][11];
int main() {
// freopen("1.in","r",stdin);
int n = read(),m = read(),C = read(),Q = read();
for(int i = 1;i <= n;++i) {
int x = read();
for(int j = 0;j < C;++j)
t[j].TR[i].mx = t[j].TR[i].val = x;
}
for(int i = 1;i <= m;++i) {
int u = read(),v = read(),w = read();
ma[make_pair(u,v)] = ma[make_pair(v,u)] = w;
num[u][w]++;num[v][w]++;
t[w].link(u,v);
// puts("!!!");
}
while(Q--) {
int opt = read();
if(opt == 0) {
int x = read(),y = read();
for(int j = 0;j < C;++j) {
t[j].update(x,y);
}
}
if(opt == 1) {
int u = read(),v = read(),w = read();
if(!ma.count(make_pair(u,v))) {
puts("No such edge.");continue;
}
int tmp = ma[make_pair(u,v)];
if(tmp == w) {puts("Success.");continue;}
if(num[u][w] + 1 > 2 || num[v][w] + 1 > 2) {puts("Error 1.");continue;}
// printf("%d %d
",t[w].find(u),t[w].find(v));
if(t[w].find(u) == t[w].find(v)) {
puts("Error 2.");continue;}
puts("Success.");
t[tmp].cut(u,v);
num[u][tmp]--;num[v][tmp]--;
num[u][w]++;num[v][w]++;
t[w].link(u,v);
ma[make_pair(u,v)] = ma[make_pair(v,u)] = w;
}
if(opt == 2) {
int c = read(),u = read(),v = read();
printf("%d
",t[c].query(v,u));
}
}
return 0;
}