• 剑指offer4:重建二叉树(后序遍历)


    1. 题目描述

      输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

    2. 思路和方法

      (1)先序遍历序列的第一个元素必定是根节点,可以由此获取二叉树的根节点。

      (2)根据根节点,中序遍历序列中查找该节点,由中序遍历的性质可知,中序遍历中该根节点左边的序列必定在根节点的左子树中,根节点右边的序列必定在右子树中。由此可以知道先序遍历中左子树以及右子树的起止位置。

      (3)分别对左子树和右子树重复上述的过程,直至所有的子树的起止位置相等时,说明已经到达叶子节点,遍历完毕。
      (4) 先序+中序->后序,中序+后序->先序,层次+中序->。

    例子:

     

      先序遍历:1  2  4  5  7  8  3  6 (根左右)

      中序遍历:4  2  7  5  8  1  3  6(左根右)

      后序遍历:4  7  8  5  2  6  3  1(左右根)

      层次遍历:1  2  3  4  5  6  7  8 (共4层,与广度搜索一样,即广度遍历)

    特殊例子:

    先序遍历:1, 2, 4, 7, 3, 5, 6, 8 (根左右)

    中序遍历:4, 7, 2, 1, 5, 3, 8, 6 (左根右)

    后序遍历:7 4 2 5 8 6 3 1(左右根)

    层次遍历:1 2 3 4 5 6 7 8 (共4层,与广度搜索一样,即广度遍历)

    3. 核心代码

     1 /**
     2  * Definition for binary tree
     3  * struct TreeNode {
     4  *     int val;
     5  *     TreeNode *left;
     6  *     TreeNode *right;
     7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     8  * };
     9  */
    10 class Solution {
    11 public:
    12     TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
    13         int len=vin.size();
    14         if (len==0)
    15             return NULL;
    16         vector<int> left_pre,right_pre,left_vin,right_vin;
    17         TreeNode* head = new TreeNode(pre[0]);
    18         int gen = 0;
    19         for(int i=0;i<len;i++)
    20         {
    21             if(vin[i]==pre[0])
    22             {
    23                 gen = i;
    24                 break;
    25             }
    26         }
    27         for(int i=0;i<gen;i++)
    28         {
    29             left_pre.push_back(pre[i+1]);
    30             left_vin.push_back(vin[i]);
    31         }
    32         for(int i=gen+1;i<len;i++)
    33         {
    34             right_pre.push_back(pre[i]);
    35             right_vin.push_back(vin[i]);
    36         }
    37         head->left = reConstructBinaryTree(left_pre,left_vin);
    38         head->right = reConstructBinaryTree(right_pre,right_vin);
    39         return head;
    40     }
    41 };
    View Code

    4. C++完整实现

      1 #include <vector>
      2 #include <iostream>
      3 #include <string>
      4 #include <stdlib.h>
      5 #include <algorithm>
      6 
      7 using namespace std;
      8 
      9 struct TreeNode {
     10     int val;
     11     TreeNode *left;
     12     TreeNode *right;
     13     TreeNode(int x) :val(x), left(nullptr), right(nullptr) {}
     14 } ;
     15 
     16 //打印节点/访问函数  
     17 void PrintNode(TreeNode* T)
     18 {
     19     if (T->val != -1)
     20         cout << T->val << " ";
     21 }
     22 
     23 //先序遍历  
     24 void PreOrder(TreeNode* T)
     25 {
     26     if (T != NULL)
     27     {
     28         //访问根节点  
     29         PrintNode(T);
     30         //访问左子结点  
     31         PreOrder(T->left);
     32         //访问右子结点  
     33         PreOrder(T->right);
     34     }
     35 }
     36 
     37 //中序遍历
     38 void InOrder(TreeNode* T)
     39 {
     40     if (T != NULL)
     41     {
     42         //访问左子结点
     43         InOrder(T->left);
     44         //访问根节点
     45         PrintNode(T);
     46         //访问右子结点
     47         InOrder(T->right);
     48     }
     49 }
     50 
     51 //后序遍历
     52 void PostOrder(TreeNode* T)
     53 {
     54     if (T != NULL)
     55     {
     56         //访问左子结点
     57         PostOrder(T->left);
     58         //访问右子结点
     59         PostOrder(T->right);
     60         //访问根节点
     61         PrintNode(T);
     62     }
     63 }
     64 
     65 TreeNode* reConstructBinaryTree(vector<int> pre, vector<int> vin)
     66 {
     67     if (pre.size() == 0 || pre.size() != vin.size())
     68         return nullptr;
     69 
     70     TreeNode *newNode = new TreeNode(pre[0]);
     71     //如果只剩一个节点了,那么可以直接返回
     72     if (pre.size() == 1)
     73         return newNode;
     74 
     75     auto posi = find(vin.begin(), vin.end(), pre[0]);
     76     //错误检测
     77     if (posi == vin.end()) {
     78         return nullptr;
     79     }
     80     int leftSize = posi - vin.begin();
     81     int rightSize = vin.end() - posi - 1;
     82 
     83     //递归求解
     84     //这里取前序和后序遍历的左右子树可能有点绕,可以好好思考一下
     85     newNode->left = reConstructBinaryTree(vector<int>(pre.begin() + 1, pre.begin() + 1 + leftSize),
     86         vector<int>(vin.begin(), vin.begin() + leftSize));
     87     newNode->right = reConstructBinaryTree(vector<int>(pre.begin() + 1 + leftSize, pre.end()),
     88         vector<int>(vin.begin() + leftSize + 1, vin.end()));
     89 
     90     return newNode;
     91 }
     92 
     93 int main()
     94 {
     95     vector<int> pre{ 1, 2, 4, 7, 3, 5, 6, 8 };
     96     vector<int> vin{ 4, 7, 2, 1, 5, 3, 8, 6 }; ////7 4 2 5 8 6 3 1
     97 
     98     TreeNode *posTraversal = reConstructBinaryTree(pre, vin);
     99     
    100     cout << "后序遍历:";
    101     PostOrder(posTraversal);
    102     cout << endl;
    103 
    104     cout << "先序遍历:";
    105     PreOrder(posTraversal);
    106     cout << endl;
    107 
    108     cout << "先序遍历:";
    109     InOrder(posTraversal);
    110     cout << endl;
    111 
    112     system("pause");
    113     return 0;
    114 }
    View Code

     5 扩展

    5.1 给出中序和后序,得到二叉树

    后序和先序(左右根,根左右),因此后序的根的位置为pos[pos.size()-1].

    main函数中的代码如下:

    cout << "给出中序和后序,构建二叉树" << endl;
    //vector<int> pre{ 1, 2, 4, 7, 3, 5, 6, 8 };

    vector<int> vin1{ 4, 7, 2, 1, 5, 3, 8, 6 };

    vector<int> pos1{ 7, 4, 2, 5, 8, 6, 3, 1 };

    TreeNode* preTraversal = reConstructBinaryTree1(pos1, vin1);

    cout << "中序遍历:";

    InOrder(preTraversal);

    cout << endl;

    C++核心代码

     1 TreeNode* reConstructBinaryTree1(vector<int> pos, vector<int> vin)
     2 {
     3     if (pos.size() == 0 || pos.size() != vin.size())
     4         return nullptr;
     5 
     6     int poslen = pos.size();
     7 
     8     TreeNode *newNode = new TreeNode(pos[poslen-1]);
     9     //如果只剩一个节点了,那么可以直接返回
    10     if (poslen == 1)
    11         return newNode;
    12 
    13     auto posi = find(vin.begin(), vin.end(), pos[poslen-1]);
    14     if (posi == vin.end())
    15         return nullptr;
    16     int leftSize = posi - vin.begin();
    17     int rightSize = vin.end() - posi - 1;
    18 
    19     newNode->left = reConstructBinaryTree1(vector<int>(pos.begin(), pos.begin() + leftSize), vector<int>(vin.begin(), vin.begin() + leftSize));
    20     newNode->right = reConstructBinaryTree1(vector<int>(pos.begin() + leftSize, pos.end()-1), vector<int>(vin.begin() + leftSize + 1, vin.end()));
    21 
    22     return newNode;
    23 }
    View Code

    5.2 给出中序和层次构建二叉树

     参考资料:https://blog.csdn.net/yanyanwenmeng/article/details/77833274(一般C++程序)

     参考资料:https://blog.csdn.net/sinat_30324577/article/details/82688414(Python)

    核心思想: 对于子树,其在层次遍历最前面的点即为根节点,故重建过程包括以下两步:
    1.利用层次遍历确定子树的根节点;
    2.根据根节点在中序中的位置划定左右子树,递归重建。

    一般C++程序
     1 #include<iostream>
     2 #include<string>
     3 
     4 using namespace std;
     5 string s1, s2;
     6 void calc(int l1, int r1, int l2, int r2)
     7 {
     8     int i, j;
     9     for (i = l2; i <= r2; i++)//找层次遍历中优先输出根节点的位置 
    10     {
    11         int b = 0;
    12         for (j = l1; j <= r1; j++)
    13         {
    14             if (s2[i] == s1[j])
    15             {
    16                 cout << s1[j];//输出根节点 
    17                 b = 1;
    18                 break;
    19             }
    20         }
    21         if (b) break;
    22     }
    23     if (j>l1) calc(l1, j - 1, 0, r2);//遍历左子树 
    24     if (j<r1) calc(j + 1, r1, 0, r2);//遍历右子树 
    25 }
    26 int main()
    27 {
    28     cin >> s1 >> s2;
    29     calc(0, s1.length() - 1, 0, s2.length() - 1);
    30     cout << endl;
    31     return 0;
    32 }
    View Code

    运行:输入输出

    C++核心程序(vector<int>)
     1 TreeNode* reConstructBinaryTree2(vector<int> level, vector<int> vin)
     2 {
     3     if (level.size() == 0 || vin.size() == 0)
     4         return nullptr;
     5     vector<int> lst;
     6     for (int i = 0; i < vin.size(); i++){
     7         lst.push_back(find(level.begin(), level.end(), vin[i]) - level.begin());
     8     }
     9     int minPosition = min_element(lst.begin(), lst.end()) - lst.begin();
    10 
    11     cout << "vin[minPosition]=" << vin[minPosition] << endl;
    12     TreeNode *newNode = new TreeNode(vin[minPosition]);
    13 
    14     newNode->left = reConstructBinaryTree2(vector<int>(level.begin(), level.end()),
    15         vector<int>(vin.begin(), vin.begin() + minPosition));
    16     newNode->right = reConstructBinaryTree2(vector<int>(level.begin(), level.end()),
    17         vector<int>(vin.begin() + minPosition + 1, vin.end()));
    18     
    19     return newNode;
    20
    View Code

    输出:

     

    6. 二叉树构建参考资料:用先序构建,https://blog.csdn.net/u014453898/article/details/54894796

    C++代码 

     1 #include<iostream>
     2 
     3 #include<string> 
     4 using namespace std;
     5 
     6 /*二叉树的结构体*/
     7 typedef struct BTree
     8 {
     9     int val;
    10     struct BTree *left, *right;
    11 }BTree;
    12 
    13 /*二叉树的类,包含着操作二叉树的各种方法*/
    14 class Tree
    15 {
    16 public:
    17     BTree *create_node(int level, string pos);
    18     void PreOrder(BTree *t);  //先序遍历 
    19     void InOrder(BTree *t);  //中序遍历 
    20     void PostOrder(BTree *t);  //后序遍历 
    21 
    22     BTree *root;
    23 };
    24 
    25 /*用先序遍历的方法递归构造一课二叉树*/
    26 BTree* Tree::create_node(int level, string pos)
    27 {
    28     int data;
    29     BTree *node = new BTree;
    30 
    31     cout << "please enter data:level " << level << " " << pos << endl;
    32     cin >> data;
    33 
    34     //若输入的数据为0,则把该结点的子结点置为空 
    35     if (data == 0)
    36     {
    37         return NULL;
    38     }
    39 
    40     node->val = data;
    41 
    42     /*create_node()的    参数用于在给二叉树赋值时表明
    43     现在赋值的是哪个结点*/
    44     node->left = create_node(level + 1, "left");
    45     node->right = create_node(level + 1, "right");
    46     return node;
    47 }
    48 
    49 void Tree::PreOrder(BTree *t)
    50 {
    51     if (t)
    52     {
    53         cout << t->val << endl;;
    54         PreOrder(t->left);
    55         PreOrder(t->right);
    56     }
    57 }
    58 
    59 void Tree::InOrder(BTree *t)
    60 {
    61     if (t)
    62     {
    63         InOrder(t->left);
    64         cout << t->val << endl;;
    65         InOrder(t->right);
    66     }
    67 }
    68 
    69 void Tree::PostOrder(BTree *t)
    70 {
    71     if (t)
    72     {
    73         PostOrder(t->left);
    74         PostOrder(t->right);
    75         cout << t->val << endl;
    76     }
    77 }
    78 
    79 int main()
    80 {
    81     Tree tree;
    82     tree.root = tree.create_node(1, "root");
    83     cout << "Pre" << endl;
    84     tree.PreOrder(tree.root);
    85 
    86     cout << "In" << endl;
    87     tree.InOrder(tree.root);
    88 
    89     cout << "Post" << endl;
    90     tree.PostOrder(tree.root);
    91 
    92     system("pause");
    93     return 0;
    94 }
    View Code

    7. 完整C++程序

      1 #include <vector>
      2 #include <iostream>
      3 #include <string>
      4 #include <stdlib.h>
      5 #include <algorithm>
      6 
      7 using namespace std;
      8 
      9 struct TreeNode {
     10     int val;
     11     TreeNode *left;
     12     TreeNode *right;
     13     TreeNode(int x) :val(x), left(nullptr), right(nullptr) {}
     14 };
     15 
     16 //打印节点/访问函数  
     17 void PrintNode(TreeNode* T)
     18 {
     19     if (T->val != -1)
     20         cout << T->val << " ";
     21 }
     22 
     23 //先序遍历  
     24 void PreOrder(TreeNode* T)
     25 {
     26     if (T != NULL)
     27     {
     28         //访问根节点  
     29         PrintNode(T);
     30         //访问左子结点  
     31         PreOrder(T->left);
     32         //访问右子结点  
     33         PreOrder(T->right);
     34     }
     35 }
     36 
     37 //中序遍历
     38 void InOrder(TreeNode* T)
     39 {
     40     if (T != NULL)
     41     {
     42         //访问左子结点
     43         InOrder(T->left);
     44         //访问根节点
     45         PrintNode(T);
     46         //访问右子结点
     47         InOrder(T->right);
     48     }
     49 }
     50 
     51 //后序遍历
     52 void PostOrder(TreeNode* T)
     53 {
     54     if (T != NULL)
     55     {
     56         //访问左子结点
     57         PostOrder(T->left);
     58         //访问右子结点
     59         PostOrder(T->right);
     60         //访问根节点
     61         PrintNode(T);
     62     }
     63 }
     64 
     65 TreeNode* reConstructBinaryTree(vector<int> pre, vector<int> vin)
     66 {
     67     if (pre.size() == 0 || pre.size() != vin.size())
     68         return nullptr;
     69 
     70     TreeNode *newNode = new TreeNode(pre[0]);
     71     //如果只剩一个节点了,那么可以直接返回
     72     if (pre.size() == 1)
     73         return newNode;
     74 
     75     auto posi = find(vin.begin(), vin.end(), pre[0]);
     76 
     77     if (posi == vin.end())
     78         return nullptr;
     79     int leftSize = posi - vin.begin();
     80     int rightSize = vin.end() - posi - 1;
     81 
     82     newNode->left = reConstructBinaryTree(vector<int>(pre.begin() + 1, pre.begin() + 1 + leftSize), 
     83         vector<int>(vin.begin(), vin.begin() + leftSize));
     84     newNode->right = reConstructBinaryTree(vector<int>(pre.begin() + 1 + leftSize, pre.end()), 
     85         vector<int>(vin.begin() + leftSize + 1, vin.end()));
     86 
     87     return newNode;
     88 }
     89 
     90 
     91 TreeNode* reConstructBinaryTree1(vector<int> pos, vector<int> vin)
     92 {
     93     if (pos.size() == 0 || pos.size() != vin.size())
     94         return nullptr;
     95 
     96     int poslen = pos.size();
     97 
     98     TreeNode *newNode = new TreeNode(pos[poslen - 1]);
     99     //如果只剩一个节点了,那么可以直接返回
    100     if (poslen == 1)
    101         return newNode;
    102 
    103     auto posi = find(vin.begin(), vin.end(), pos[poslen - 1]);
    104     if (posi == vin.end())
    105         return nullptr;
    106     int leftSize = posi - vin.begin();
    107     int rightSize = vin.end() - posi - 1;
    108 
    109     newNode->left = reConstructBinaryTree1(vector<int>(pos.begin(), pos.begin() + leftSize), vector<int>(vin.begin(), vin.begin() + leftSize));
    110     newNode->right = reConstructBinaryTree1(vector<int>(pos.begin() + leftSize, pos.end() - 1), vector<int>(vin.begin() + leftSize + 1, vin.end()));
    111 
    112     return newNode;
    113 }
    114 
    115 TreeNode* reConstructBinaryTree2(vector<int> level, vector<int> vin)
    116 {
    117     if (level.size() == 0 || vin.size() == 0)
    118         return nullptr;
    119     vector<int> lst;
    120     for (int i = 0; i < vin.size(); i++){
    121         lst.push_back(find(level.begin(), level.end(), vin[i]) - level.begin());
    122     }
    123     int minPosition = min_element(lst.begin(), lst.end()) - lst.begin();
    124 
    125     //cout << "vin[minPosition]=" << vin[minPosition] << endl;
    126     TreeNode *newNode = new TreeNode(vin[minPosition]);
    127 
    128     newNode->left = reConstructBinaryTree2(vector<int>(level.begin(), level.end()),
    129         vector<int>(vin.begin(), vin.begin() + minPosition));
    130     newNode->right = reConstructBinaryTree2(vector<int>(level.begin(), level.end()),
    131         vector<int>(vin.begin() + minPosition + 1, vin.end()));
    132     
    133     return newNode;
    134 //if not level or not vin :
    135 //return None
    136 //lst = []
    137 //for num in vin :
    138 //    lst.append(level.index(num))
    139 //idx = lst.index(min(lst))
    140 //
    141 //root = TreeNode(vin[idx])
    142 //left = vin[0:idx]
    143 //right = vin[idx + 1:]
    144 //root.left = restruct(level, left)
    145 //root.right = restruct(level, right)
    146 //return root
    147 }
    148 
    149 
    150 
    151 int main()
    152 {
    153     //层次遍历是1 2 3 4 5 6 7 8
    154     cout << "给出先序和中序,构建二叉树" << endl;
    155     vector<int> pre0{ 1, 2, 4, 7, 3, 5, 6, 8 };
    156     vector<int> vin0{ 4, 7, 2, 1, 5, 3, 8, 6 }; ////7 4 2 5 8 6 3 1
    157 
    158     TreeNode* posTraversal = reConstructBinaryTree(pre0, vin0);
    159 
    160     cout << "后序遍历:";
    161     PostOrder(posTraversal);
    162     cout << endl;
    163 
    164     cout << "先序遍历:";
    165     PreOrder(posTraversal);
    166     cout << endl;
    167 
    168     cout << "中序遍历:";
    169     InOrder(posTraversal);
    170     cout << endl;
    171 
    172 
    173     cout << "给出中序和后序,构建二叉树" << endl;
    174     //vector<int> pre{ 1, 2, 4, 7, 3, 5, 6, 8 };
    175     vector<int> vin1{ 4, 7, 2, 1, 5, 3, 8, 6 };
    176     vector<int> pos1{ 7, 4, 2, 5, 8, 6, 3, 1 };
    177 
    178     TreeNode* preTraversal = reConstructBinaryTree1(pos1, vin1);
    179     cout << "后序遍历:";
    180     PostOrder(preTraversal);
    181     cout << endl;
    182 
    183     cout << "先序遍历:";
    184     PreOrder(preTraversal);
    185     cout << endl;
    186 
    187     cout << "中序遍历:";
    188     InOrder(preTraversal);
    189     cout << endl;
    190 
    191 
    192     cout << "给出中序和层次,构建二叉树" << endl;
    193     //vector<int> pre{ 1, 2, 4, 7, 3, 5, 6, 8 };
    194     //vector<int> pos1{ 7, 4, 2, 5, 8, 6, 3, 1 };
    195     vector<int> level2{ 1, 2, 3, 4, 5, 6, 7, 8 };
    196     vector<int> vin2{ 4, 7, 2, 1, 5, 3, 8, 6 };
    197     TreeNode* Traversal = reConstructBinaryTree2(level2, vin2);
    198     cout << "后序遍历:";
    199     PostOrder(Traversal);
    200     cout << endl;
    201 
    202     cout << "先序遍历:";
    203     PreOrder(Traversal);
    204     cout << endl;
    205 
    206     cout << "中序遍历:";
    207     InOrder(Traversal);
    208     cout << endl;
    209 
    210 
    211 
    212     system("pause");
    213     return 0;
    214 }
    215 
    216 //class TreeNode : # 定义二叉树节点类
    217 //    def __init__(self, val) :
    218 //    self.val = val
    219 //    self.left = None
    220 //    self.right = None
    221 //
    222 //    def restruct(level, vin) :
    223 //if not level or not vin :
    224 //return None
    225 //lst = []
    226 //    for num in vin :
    227 //    lst.append(level.index(num))
    228 //        print("lst" + str(lst))
    229 //        idx = lst.index(min(lst))
    230 //        print("idx--" + str(idx))
    231 //
    232 //        root = TreeNode(vin[idx])
    233 //        left = vin[0:idx]
    234 //        right = vin[idx + 1:]
    235 //        root.left = restruct(level, left)
    236 //        root.right = restruct(level, right)
    237 //        return root
    238 //
    239 //        lst1 = []
    240 //        lst2 = []
    241 //
    242 //        def pre_traverse(root) :
    243 //    if not root :
    244 //    return None
    245 //        lst1.append(root.val)
    246 //        pre_traverse(root.left)
    247 //        pre_traverse(root.right)
    248 //        return lst1
    249 //
    250 //        def leaf(root) :
    251 //    if not root :
    252 //    return None
    253 //    if not root.left and not root.right :
    254 //        lst2.append(root.val)
    255 //        leaf(root.left)
    256 //        leaf(root.right)
    257 //        return lst2
    258 //
    259 //        b = restruct([1, 2, 3, 4, 5, 6, 7, 8], [4, 7, 2, 1, 5, 3, 8, 6])
    260 //
    261 //        print(pre_traverse(b))
    View Code

    参考资料

    https://blog.csdn.net/My_Jobs/article/details/43451187

    https://blog.csdn.net/wtyvhreal/article/details/45644843

    https://blog.csdn.net/m0_37950361/article/details/82531649

    https://blog.csdn.net/u014453898/article/details/54894796 

    https://blog.csdn.net/u014453898/article/details/54894796

    https://blog.csdn.net/sinat_30324577/article/details/82688414 

  • 相关阅读:
    Docker基础-端口映射与容器互联
    Docker基础-Docker数据管理
    Docker基础-搭建本地私有仓库
    Docker基础-容器操作
    Docker基础-镜像操作
    CentOS 7.2安装Docker-ce
    CentOS7下搭建yum仓库
    phpize命令在安装AMQP插件是报错phpize:Cannot find autoconf. Please check your autoconf installation and the $PHP_AUTOCONF envir的解决方法
    CentOS下安装PHP的AMQP扩展方法和步骤
    Python-面向对象编程01_什么是面向对象
  • 原文地址:https://www.cnblogs.com/wxwhnu/p/11390471.html
Copyright © 2020-2023  润新知