Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence frombeginWord to endWord, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the word list
For example,
Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
class Solution { public: int ladderLength(string beginWord, string endWord, unordered_set<string>& wordList) { if(beginWord.size() != endWord.size()) return 0; unordered_set<string> visited; int level = 0; bool found = 0; queue<string> current,next; current.push(beginWord); while(!current.empty() && !found){ level++; while(!current.empty() && !found){ string str(current.front()); current.pop(); for(size_t i=0;i<str.size();i++){ string new_word(str); for (char c = 'a';c <= 'z';c++){ if (c == new_word[i]) continue; swap(new_word[i],c); if(new_word == endWord){ found = 1; break; } if(wordList.count(new_word) && !visited.count(new_word)){ visited.insert(new_word); next.push(new_word); } swap(new_word[i],c); } } } swap(current,next); } if(found) return level+1; else return 0; } };