[POJ2553]The Bottom of a Graph
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 11182 | Accepted: 4608 |
Description
We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Input
The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
Sample Input
3 3 1 3 2 3 3 1 2 1 1 2 0
Sample Output
1 3 2
Source
题目大意:输出有哪些点在有向图中满足它能到达的点都可以到它
试题分析:缩点后输出出度为0的强联通分量中的点即可。
代码:
#include<iostream> #include<cstring> #include<cstdio> #include<vector> #include<queue> #include<stack> #include<algorithm> using namespace std; inline int read(){ int x=0,f=1;char c=getchar(); for(;!isdigit(c);c=getchar()) if(c=='-') f=-1; for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f; } const int MAXN=5101; const int INF=999999; int N,M; vector<int> vec[MAXN]; bool inq[MAXN]; int que[MAXN]; int dfn[MAXN],low[MAXN]; int tar[MAXN]; bool oud[MAXN]; int tot,Col,tmp; void Tarjan(int x){ tot++; dfn[x]=low[x]=tot; que[++tmp]=x; inq[x]=true; for(int i=0;i<vec[x].size();i++){ int to=vec[x][i]; if(!dfn[to]){ Tarjan(to); low[x]=min(low[x],low[to]); } else if(inq[to]) low[x]=min(low[x],dfn[to]); } if(dfn[x]==low[x]){ ++Col; tar[x]=Col; inq[x]=false; while(x!=que[tmp]){ int k=que[tmp]; tar[k]=Col; inq[k]=false; tmp--; } tmp--; } return ; } vector<int> vec2[MAXN]; int ans[MAXN]; int ans2[MAXN]; int atmp,atmp2; int main(){ while(1){ N=read(); if(!N) break; M=read(); memset(inq,false,sizeof(inq)); memset(oud,false,sizeof(oud)); atmp=atmp2=0; memset(dfn,0,sizeof(dfn)); tmp=0,Col=0,tot=0; memset(tar,0,sizeof(tar)); for(int i=1;i<=N;i++) vec[i].clear(),vec2[i].clear(); for(int i=1;i<=M;i++){ int u=read(),v=read(); vec[u].push_back(v); } for(int i=1;i<=N;i++) if(!dfn[i]) Tarjan(i); for(int i=1;i<=N;i++){ //size[tar[i]]++; vec2[tar[i]].push_back(i); for(int j=0;j<vec[i].size();j++){ if(tar[i]!=tar[vec[i][j]]) oud[tar[i]]=true; } } for(int i=1;i<=Col;i++){ if(!oud[i]) ans[++atmp]=i; } for(int i=1;i<=atmp;i++){ for(int j=0;j<vec2[ans[i]].size();j++){ ans2[++atmp2]=vec2[ans[i]][j]; } } sort(ans2+1,ans2+atmp2+1); for(int i=1;i<atmp2;i++) printf("%d ",ans2[i]); printf("%d ",ans2[atmp2]); } }