• 【树形dp】Distance in Tree


    [CF161.D] Distance in Tree
    time limit per test
    3 seconds
    memory limit per test
    512 megabytes

    tree is a connected graph that doesn't contain any cycles.

    The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.

    You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a distance of exactly k between them. Note that pairs (vu) and (u,v) are considered to be the same pair.

    Input

    The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required distance between the vertices.

    Next n - 1 lines describe the edges as "ai bi" (without the quotes) (1 ≤ ai, bi ≤ nai ≠ bi), where ai and bi are the vertices connected by the i-th edge. All given edges are different.

    Output

    Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.

    Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.

    Examples
    inpu
    5 2
    1 2
    2 3
    3 4
    2 5
    output
    4
    input
    5 3
    1 2
    2 3
    3 4
    4 5
    output
    2
    Note

    In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).

    题目大意:树上有N个点,问多少对不同点对(u,v)最短路为K?

    试题分析:设dp[N][K]代表从i走j步能到达多少点。

         初始化:dp[i][0]=1;//它不走可以到它自己

         转移一步:dp[i][j]=sum(dp[i->son][j-1]);

         统计答案分两步,一步是从i走K步能到达的点:dp[i][K]

         一步是以i为最近公共祖先的点对:dp[i->son][t-1]*(dp[i][K-t]-dp[i->son][K-t-1]);

         因为u,v   v,u算一对,所以ans最后加上tmp/2;

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<stack>
    #include<algorithm>
    using namespace std;
    
    inline int read(){
    	int x=0,f=1;char c=getchar();
    	for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
    	for(;isdigit(c);c=getchar()) x=x*10+c-'0';
    	return x*f;
    }
    const int MAXN=100001;
    const int INF=999999;
    int N,K;
    long long dp[50001][501];
    vector<int> vec[50001];
    long long ans;
    
    void dfs(int x,int fa){
    	dp[x][0]=1;
    	for(int i=0;i<vec[x].size();i++){
    		if(vec[x][i]==fa) continue;
    		dfs(vec[x][i],x);
    	}
    	for(int i=0;i<vec[x].size();i++){
    		if(vec[x][i]==fa) continue;
    		for(int j=1;j<=K;j++) dp[x][j]+=dp[vec[x][i]][j-1];
    	}
    	ans+=dp[x][K]; long long tmp=0;
    	for(int i=0;i<vec[x].size();i++){
    		if(vec[x][i]!=fa)
    		    for(int j=1;j<K;j++) tmp+=(dp[vec[x][i]][j-1]*(dp[x][K-j]-dp[vec[x][i]][K-j-1]));
    	}
    	ans+=(tmp/2);
    	return ;
    }
    
    int main(){
        N=read(),K=read();
        for(int i=1;i<N;i++){
        	int u=read(),v=read();
    		vec[u].push_back(v);
    		vec[v].push_back(u); 
    	}
    	dfs(1,-1);
    	printf("%d
    ",ans);
    }
  • 相关阅读:
    request内置对象
    JSP页面、包含
    HTTP协议
    html简介
    数据访问层工具类
    数据运算
    可变于不可变对象分类
    有序 无序 的区别
    字符串方法
    day01_final
  • 原文地址:https://www.cnblogs.com/wxjor/p/7266934.html
Copyright © 2020-2023  润新知