• 结合docker做flask+kafka数据接口与压力测试


    一、需求

    需要做实时数据接入的接口、数据最终要写入库,要做到高并发,数据的完整,不丢失数据。

    二、技术选型

    1.因为只是做简单的接口,不需要复杂功能,所以决定用flask这个简单的python框架(因为做运维的作者只会python所以只能在python框架里找);

    2.要做到数据的实时性,考虑到数据落地入库可能io会延时比较大,所以决定数据通过接口先写入消息队列中间件kafka

    为什么用kafka因为kafka数据是顺序写文件,效率还可以,主要是的写入文件可以保证自定义时间内的数据不丢失;kafka可以做集群提高性能;kafka支持同一个group下多个消费程序对同一个topic处理;如果听不懂请自己学习kafka相关知识

    3.因为考虑到后期的快速部署与迁移问题,所以决定结合docker来做。(主要是为了装逼,再有就是回顾一下docker知识

    三、原理图

    Sample Flowchart Template

    条件可以的话,zookeeper+kafka也可以做成docker镜像,这里这样做是作者的服务器资源有限;也方便后面压力测试,所以各个程序都独立开

    四、操作过程

    1.安装配置kafka

    (1)、在服务器上先安装java环境yum install  java-1.8.0-openjdk* –y

    (2)、下载kafka包kafka_2.11-2.1.1.tgz;解压到指定目录下;

    cd /data/kafka_2.11-2.1.1/目录

    bin/zookeeper-server-start.sh –daemon config/zookeeper.properties &

    配置kafka配置文件 config/server.properties开启listeners=PLAINTEXT://:9092(kafka监听0.0.0.0:9092端口不开启默认是localhost:9092);添加delete.topic.enable=true(允许指定删除topic;默认为flase;kafka_2.11-2.1.1/bin/kafka-topics.sh --delete --zookeeper localhost:2181 --topic xxxx);log.retention.hours=168(数据保留时间默认为168小时);log.segment.bytes=1073741824(最大segment数据文件大小为1G;单位字节);

    开启kafka服务

    bin/kafka-server-start.sh config/server.properties &

    如果安装了nohup可以用nohup bin/kafka-server-start.sh config/server.properties & 开启不会在退出终端时退出程序。

    (3)、netstat –tpln看到9092和2181都已经监听起来就OK再检查selinux是否关闭,iptables是否放通

    2.制做nginx+uwsgi+flask的docker镜像

    (1)、下载centos6.6的docker基础境像到docker;运行后安装nginx和python3(安装python3下载python3的tar包到服务器解压;创建目录/usr/local/python3;进入python3解压目录./configure --prefix=/usr/local/python3;make && make install ; ln –s /usr/local/python3/bin/python3 /usr/bin;ln –s /usr/local/python3/bin/pip3 /usr/bin)

    (2)、安装uwsgi;pip3 install uwsgi;ln –s /usr/local/python3/bin/uwsgi /usr/bin;

    (3)、安装flask;pip3 install flask;

    (4)、安装python3 kafka相关包(pip3 install kakfa-python;pip3 install kafka [这个包方便在运行kafka-python下KafkaProducer方法时有错误话有报错输出,不然有问题是没有报错的 坑死了])

    (5)、创建目录/data/webapi

    (6)、在/etc/hosts下加上kafka服务器的hostname的解析;不然服务器是无法发消息到kafka的大坑原因:是从zookeeper获取broker的meta信息时候返回的不是IP而是hostname

    (7)、配置启动nginx和uwsgi脚本startnguw.sh如下:

    #!/bin/bash
    sh /root/nginx_ops.sh start
    nohup uwsgi /data/webapi/app.ini &
    tail -f /dev/null

    注意nginx作者是脚本安装的,安装好就有nginx_ops.sh的启动脚本;app.ini是uwsgi的配置文件;tail –f /dev/null这个是方便用docker-compose启动加的不加用docker-compose启动的话就会有直重启docker

    (8).配置/usr/local/nginx/config/vhosts/webapi.conf如下:

    server {
            listen 4000;
            server_name 0.0.0.0;
     
            location / {
                    include uwsgi_params;
                    uwsgi_pass unix:/data/webapi/webapi.sock;
            }
    
    }

    (这里指定端口是4000;uwsgi是用的webapi.sock套接字,也可以用ip加端口具体看app.ini的uwsgi的配置文件是怎么配置的;)

    以上配置好就可以通过docker commit –p 原docker名字 新docker名字保存为新的包含新安装内容的docker镜像;如果有阿里cr.console.aliyun.com或hub.docker账号的可以命名为自己账号下的仓库名加版本号上传。

    作者已经做好了;地址为 registry.cn-shenzhen.aliyuncs.com/wuxiaozy/nguwsgi:v0.2

     

    3.在centos7服务器上配置docker-compose.yml通过docker-compose运行容器

    (1)、在centos7上安装docker-compose

    (2)、创建目录/usr/local/nguwsgi

    (3)、创建文件docker-compose.yml内容如下:

    version: '2'
    services:
      nguw:
        image: registry.cn-shenzhen.aliyuncs.com/wuxiaozy/nguwsgi:v0.2
        container_name: nguwsgi01
        restart: always
        dns_search: .
        cap_add:
          - ALL
        volumes:
          - /data/webapi:/data/webapi
        ports:
          - 4000:4000
        networks:
          - luntan
        command:
          - /bin/bash
          - -c
          - |
            /bin/bash /root/startnguw.sh
    networks:
      luntan:
        external: false

    注意:volumes为把centos7下的/data/webapi目录映射到nguwsgi01这个docker容器的/data/webapi目录前提是容器要有/data/webapi这个目录;port表示把docker容器的4000端口映射成本机的4000端口

    (4)、在centos7的/data/webapi目录下上传flask项目和app.ini uwsgi的配置文件

    uwsgi配置文件如下:

    [uwsgi]
    base_dir = /data/webapi
    chdir = /data/webapi
    wsgi-file = myflask.py
    callable = app
     
    socket = %(base_dir)/webapi.sock
    chmod-socket = 666
     
    processes = 4
    threads = 10
     
    master = true
    daemonize = %(base_dir)/chat.log
    pidfile  = %(base_dir)/chat.pid

    (注意myflask.py是flask的主启动文件;socker这个配置和nginx下webapi.conf配置的 uwsgi_pass有关,这里配置是webapi.sock话nginx配置也是webapi.sock;process和threads表示uwsgi开多少个进程,每个进程开多少个线程和uwgi的性能配置有关)

    flask内容如下:

    #from gevent import monkey
    #monkey.patch_all()
    
    from flask import Flask,render_template,request
    from kafka import KafkaProducer
    import json
    
    
    #from gevent.pywsgi import WSGIServer
    
    
    app = Flask(__name__)
    
    
    @app.route('/')
    def hello_world():
        return 'Hello World!'
    
    @app.route('/hello')
    @app.route('/hello/<name>')
    def hello(name=None):
        return render_template('hello.html',name=name)
    
    @app.route('/user/<username>')
    def show_user_profile(username):
        return "hello Mr %s"%(username)
    
    
    @app.route('/financial_pro',methods=['GET','POST'])
    def financial_pro():
        if request.method == 'POST':
            data = request.form
            producer = KafkaProducer(bootstrap_servers=['192.168.32.56:9092'],value_serializer=lambda v: json.dumps(v).encode("utf-8"))
            response = producer.send('financial_pro',data)
            producer.flush()
            print(response)
            return "OK"
        else:
            return "Methods Error"
    
    if __name__ == '__main__':
        app.run(host="0.0.0.0",port=4000,threaded=True)
        #http_server = WSGIServer(('0.0.0.0',4000),app)
        #http_server.serve_forever()

    注意:/;/hello;/user/name;这些是测试网页;financial_pro是接口;在安装了flask的python3环境下python3 myflask.py是可以开启web服务的只是性能差高并发下会的数据丢失;也可以用gevent+flask开启性能也没有nginx+uwsgi高

    (5)、开启nguwsgi01这个docker容器

    cd /usr/local/nguwsgi目录下动行 docker-compose up –d(如果docker-compose.yml文件名字不叫这个就要用docker-compose –f xxxx.yml up –d)

    4.编写handler程序从kafka读取数据实现数据的落地;

    内容如下:(python3编写需要pip3 install kafka-python)

    from kafka import KafkaConsumer
    import json
    from multiprocessing import Pool
    import time
    import threading
    
    
    ##定义参数
    #程序处理的接口
    handler_API = ["identity_pro","financial_pro","internet_pro","social_pro","trip_pro","communication_pro"]
    #不同接口处理程序group_id
    gids = {"identity_pro":"ide_g","financial_pro":"fin_g","internet_pro":"int_g","social_pro":"soc_g","trip_pro":"tri_g","communication_pro":"com_g"}
    #不同group_id下消费程序的数量
    xf = {"identity_pro":1,"financial_pro":1,"internet_pro":1,"social_pro":1,"trip_pro":1,"communication_pro":1}
    #kafka服务器地址和端口
    kafka_servers=["192.168.32.56:9092"]
    #各接口数据字段数
    check_data = {"identity_pro":7,"financial_pro":4,"internet_pro":5,"social_pro":3,"trip_pro":3,"communication_pro":4}
    
    class Handler(object):
        def __init__(self,handler_API,gids,xf,kafka_servers,check_data):
            self.hanapi = handler_API
            self.gids = gids
            self.xf = xf
            self.kafka_servers = kafka_servers
            self.check_data = check_data
    
        def conumers(self,api_name,kfksers):
            gid = self.gids[api_name]
            # eraliest为从最早的偏移量开始
            #con = KafkaConsumer(api_name,bootstrap_servers=[kfksers],auto_offset_reset="earliest",value_deserializer=json.loads)
            #auto_offset_reset默认为latest
            con = KafkaConsumer(api_name, bootstrap_servers=[kfksers], auto_offset_reset="latest",value_deserializer=json.loads)
            Tm = time.strftime("%Y-%m-%d %H:%M:%S")
            for message in con:
                print("[%s] %s:%d:%d:key:%s"%(Tm,message.topic,message.partition,message.offset,message.key))
                data = message.value
                if int(self.check_data[api_name]) == len(data.keys()):
                    print(data)
                    with open("d:/%s.txt"%api_name,"a") as F:
                        F.write("[%s]--%s
    "%(Tm,data))
                    F.close()
                else:
                    print("%s--数据字段不符合要求!!!"%data)
                    with open("d:/%s.txt"%api_name,"a") as F:
                        F.write("[%s]--%s--%s"%(Tm,data,"数据字段数不符合要求!!!
    "))
                    F.close()
    
        def conumers_thread_num(self,api_name,kfksers):
            thread_num = int(self.xf[api_name])
            for i in range(thread_num):
                t = threading.Thread(target=conumers_wrapper,args=(self,api_name,kfksers))
                t.setDaemon(True)
                t.start()
                t.join()
    
        def multirun(self):
            p = Pool(5)
            for i in range(int(len(self.hanapi))):
                api_name = self.hanapi[i]
                kfksers = ",".join(self.kafka_servers)
                print("开启子进程%s"%i)
                p.apply_async(conumers_thread_num_wrapper,args=(self,api_name,kfksers))
            print('等待所有添加的进程运行完毕。。。')
            p.close()
            p.join()
    
    
    def conumers_wrapper(cls_instance,api_name,kfksers):
        return cls_instance.conumers(api_name,kfksers)
    
    def conumers_thread_num_wrapper(cls_instance,api_name,kfksers):
        return cls_instance.conumers_thread_num(api_name,kfksers)
    
    if __name__ == "__main__":
        Hd = Handler(handler_API,gids,xf,kafka_servers,check_data)
        Hd.multirun()

    注意:脚本通过修改参数可以支持kafka集群和kafka 同一goup_id下多consumer消费进程;)

    5.在服务器centos6.5 ip:192.168.32.183上ab压测

    安装httpd-ab;yum install httpd-ab

    压测命令:

    time ab -c 100 -n 10000 -T 'application/x-www-form-urlencoded' -p /tmp/wx20191010.txt http://192.168.32.78:4000/financial_pro

    /tmp/wx20191010.txt内容为test01=111&test02=222&test03=ccc&test04=ddd

    (-c 100是100个并发; –n 10000是10000次请求;-T http头;-p是post数据文件)

    测试结果:

    python3 myflask.py的情况下 100个并发10000次请求;cpu 70%;耗时1m49秒;有大约500~600个数据丢失;

    nginx+uwsgi+flask下(四个进程processes=4;4线程threads=4);cpu 30%;耗时1m30秒;没有数据丢失;

    nginx+uwsgi+flask下(四个进程processes=4;4线程threads=10);cpu 60%;耗时49秒;没有数据丢失;

  • 相关阅读:
    Java命名规范
    用U盘安装系统2
    将Sublime Text3添加到右键菜单中
    Git版本控制使用介绍
    Sublime Text各种插件使用方法
    安装Sublime Text 3插件
    Sublime Text修改显示图标
    卸载Visual Studio Code后删除右键Open with Code…
    做最好的自己(Be Your Personal Best)
    Eclipse全屏及插件下载
  • 原文地址:https://www.cnblogs.com/wx2276/p/11663010.html
Copyright © 2020-2023  润新知