梯度提升树(GBT)是决策树的集合。 GBT迭代地训练决策树以便使损失函数最小化。 spark.ml实现支持GBT用于二进制分类和回归,可以使用连续和分类特征。
导入包
import org.apache.spark.sql.SparkSession import org.apache.spark.sql.Dataset import org.apache.spark.sql.Row import org.apache.spark.sql.DataFrame import org.apache.spark.sql.Column import org.apache.spark.sql.DataFrameReader import org.apache.spark.rdd.RDD import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder import org.apache.spark.sql.Encoder import org.apache.spark.sql.DataFrameStatFunctions import org.apache.spark.sql.functions._ import org.apache.spark.ml.linalg.Vectors import org.apache.spark.ml.feature.{ IndexToString, StringIndexer, VectorIndexer } import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.Pipeline import org.apache.spark.ml.regression.{ GBTRegressionModel, GBTRegressor } import org.apache.spark.ml.evaluation.RegressionEvaluator import org.apache.spark.ml.tuning.{ ParamGridBuilder, CrossValidator }
导入数据源
val spark = SparkSession.builder().appName("Spark Gradient-boosted tree regression").config("spark.some.config.option", "some-value").getOrCreate() // For implicit conversions like converting RDDs to DataFrames import spark.implicits._ val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List( (0, "male", 37, 10, "no", 3, 18, 7, 4), (0, "female", 27, 4, "no", 4, 14, 6, 4), (0, "female", 32, 15, "yes", 1, 12, 1, 4), (0, "male", 57, 15, "yes", 5, 18, 6, 5), (0, "male", 22, 0.75, "no", 2, 17, 6, 3), (0, "female", 32, 1.5, "no", 2, 17, 5, 5), (0, "female", 22, 0.75, "no", 2, 12, 1, 3), (0, "male", 57, 15, "yes", 2, 14, 4, 4), (0, "female", 32, 15, "yes", 4, 16, 1, 2), (0, "male", 22, 1.5, "no", 4, 14, 4, 5), (0, "male", 37, 15, "yes", 2, 20, 7, 2), (0, "male", 27, 4, "yes", 4, 18, 6, 4), (0, "male", 47, 15, "yes", 5, 17, 6, 4), (0, "female", 22, 1.5, "no", 2, 17, 5, 4), (0, "female", 27, 4, "no", 4, 14, 5, 4), (0, "female", 37, 15, "yes", 1, 17, 5, 5), (0, "female", 37, 15, "yes", 2, 18, 4, 3), (0, "female", 22, 0.75, "no", 3, 16, 5, 4), (0, "female", 22, 1.5, "no", 2, 16, 5, 5), (0, "female", 27, 10, "yes", 2, 14, 1, 5), (0, "female", 22, 1.5, "no", 2, 16, 5, 5), (0, "female", 22, 1.5, "no", 2, 16, 5, 5), (0, "female", 27, 10, "yes", 4, 16, 5, 4), (0, "female", 32, 10, "yes", 3, 14, 1, 5), (0, "male", 37, 4, "yes", 2, 20, 6, 4), (0, "female", 22, 1.5, "no", 2, 18, 5, 5), (0, "female", 27, 7, "no", 4, 16, 1, 5), (0, "male", 42, 15, "yes", 5, 20, 6, 4), (0, "male", 27, 4, "yes", 3, 16, 5, 5), (0, "female", 27, 4, "yes", 3, 17, 5, 4), (0, "male", 42, 15, "yes", 4, 20, 6, 3), (0, "female", 22, 1.5, "no", 3, 16, 5, 5), (0, "male", 27, 0.417, "no", 4, 17, 6, 4), (0, "female", 42, 15, "yes", 5, 14, 5, 4), (0, "male", 32, 4, "yes", 1, 18, 6, 4), (0, "female", 22, 1.5, "no", 4, 16, 5, 3), (0, "female", 42, 15, "yes", 3, 12, 1, 4), (0, "female", 22, 4, "no", 4, 17, 5, 5), (0, "male", 22, 1.5, "yes", 1, 14, 3, 5), (0, "female", 22, 0.75, "no", 3, 16, 1, 5), (0, "male", 32, 10, "yes", 5, 20, 6, 5), (0, "male", 52, 15, "yes", 5, 18, 6, 3), (0, "female", 22, 0.417, "no", 5, 14, 1, 4), (0, "female", 27, 4, "yes", 2, 18, 6, 1), (0, "female", 32, 7, "yes", 5, 17, 5, 3), (0, "male", 22, 4, "no", 3, 16, 5, 5), (0, "female", 27, 7, "yes", 4, 18, 6, 5), (0, "female", 42, 15, "yes", 2, 18, 5, 4), (0, "male", 27, 1.5, "yes", 4, 16, 3, 5), (0, "male", 42, 15, "yes", 2, 20, 6, 4), (0, "female", 22, 0.75, "no", 5, 14, 3, 5), (0, "male", 32, 7, "yes", 2, 20, 6, 4), (0, "male", 27, 4, "yes", 5, 20, 6, 5), (0, "male", 27, 10, "yes", 4, 20, 6, 4), (0, "male", 22, 4, "no", 1, 18, 5, 5), (0, "female", 37, 15, "yes", 4, 14, 3, 1), (0, "male", 22, 1.5, "yes", 5, 16, 4, 4), (0, "female", 37, 15, "yes", 4, 17, 1, 5), (0, "female", 27, 0.75, "no", 4, 17, 5, 4), (0, "male", 32, 10, "yes", 4, 20, 6, 4), (0, "female", 47, 15, "yes", 5, 14, 7, 2), (0, "male", 37, 10, "yes", 3, 20, 6, 4), (0, "female", 22, 0.75, "no", 2, 16, 5, 5), (0, "male", 27, 4, "no", 2, 18, 4, 5), (0, "male", 32, 7, "no", 4, 20, 6, 4), (0, "male", 42, 15, "yes", 2, 17, 3, 5), (0, "male", 37, 10, "yes", 4, 20, 6, 4), (0, "female", 47, 15, "yes", 3, 17, 6, 5), (0, "female", 22, 1.5, "no", 5, 16, 5, 5), (0, "female", 27, 1.5, "no", 2, 16, 6, 4), (0, "female", 27, 4, "no", 3, 17, 5, 5), (0, "female", 32, 10, "yes", 5, 14, 4, 5), (0, "female", 22, 0.125, "no", 2, 12, 5, 5), (0, "male", 47, 15, "yes", 4, 14, 4, 3), (0, "male", 32, 15, "yes", 1, 14, 5, 5), (0, "male", 27, 7, "yes", 4, 16, 5, 5), (0, "female", 22, 1.5, "yes", 3, 16, 5, 5), (0, "male", 27, 4, "yes", 3, 17, 6, 5), (0, "female", 22, 1.5, "no", 3, 16, 5, 5), (0, "male", 57, 15, "yes", 2, 14, 7, 2), (0, "male", 17.5, 1.5, "yes", 3, 18, 6, 5), (0, "male", 57, 15, "yes", 4, 20, 6, 5), (0, "female", 22, 0.75, "no", 2, 16, 3, 4), (0, "male", 42, 4, "no", 4, 17, 3, 3), (0, "female", 22, 1.5, "yes", 4, 12, 1, 5), (0, "female", 22, 0.417, "no", 1, 17, 6, 4), (0, "female", 32, 15, "yes", 4, 17, 5, 5), (0, "female", 27, 1.5, "no", 3, 18, 5, 2), (0, "female", 22, 1.5, "yes", 3, 14, 1, 5), (0, "female", 37, 15, "yes", 3, 14, 1, 4), (0, "female", 32, 15, "yes", 4, 14, 3, 4), (0, "male", 37, 10, "yes", 2, 14, 5, 3), (0, "male", 37, 10, "yes", 4, 16, 5, 4), (0, "male", 57, 15, "yes", 5, 20, 5, 3), (0, "male", 27, 0.417, "no", 1, 16, 3, 4), (0, "female", 42, 15, "yes", 5, 14, 1, 5), (0, "male", 57, 15, "yes", 3, 16, 6, 1), (0, "male", 37, 10, "yes", 1, 16, 6, 4), (0, "male", 37, 15, "yes", 3, 17, 5, 5), (0, "male", 37, 15, "yes", 4, 20, 6, 5), (0, "female", 27, 10, "yes", 5, 14, 1, 5), (0, "male", 37, 10, "yes", 2, 18, 6, 4), (0, "female", 22, 0.125, "no", 4, 12, 4, 5), (0, "male", 57, 15, "yes", 5, 20, 6, 5), (0, "female", 37, 15, "yes", 4, 18, 6, 4), (0, "male", 22, 4, "yes", 4, 14, 6, 4), (0, "male", 27, 7, "yes", 4, 18, 5, 4), (0, "male", 57, 15, "yes", 4, 20, 5, 4), (0, "male", 32, 15, "yes", 3, 14, 6, 3), (0, "female", 22, 1.5, "no", 2, 14, 5, 4), (0, "female", 32, 7, "yes", 4, 17, 1, 5), (0, "female", 37, 15, "yes", 4, 17, 6, 5), (0, "female", 32, 1.5, "no", 5, 18, 5, 5), (0, "male", 42, 10, "yes", 5, 20, 7, 4), (0, "female", 27, 7, "no", 3, 16, 5, 4), (0, "male", 37, 15, "no", 4, 20, 6, 5), (0, "male", 37, 15, "yes", 4, 14, 3, 2), (0, "male", 32, 10, "no", 5, 18, 6, 4), (0, "female", 22, 0.75, "no", 4, 16, 1, 5), (0, "female", 27, 7, "yes", 4, 12, 2, 4), (0, "female", 27, 7, "yes", 2, 16, 2, 5), (0, "female", 42, 15, "yes", 5, 18, 5, 4), (0, "male", 42, 15, "yes", 4, 17, 5, 3), (0, "female", 27, 7, "yes", 2, 16, 1, 2), (0, "female", 22, 1.5, "no", 3, 16, 5, 5), (0, "male", 37, 15, "yes", 5, 20, 6, 5), (0, "female", 22, 0.125, "no", 2, 14, 4, 5), (0, "male", 27, 1.5, "no", 4, 16, 5, 5), (0, "male", 32, 1.5, "no", 2, 18, 6, 5), (0, "male", 27, 1.5, "no", 2, 17, 6, 5), (0, "female", 27, 10, "yes", 4, 16, 1, 3), (0, "male", 42, 15, "yes", 4, 18, 6, 5), (0, "female", 27, 1.5, "no", 2, 16, 6, 5), (0, "male", 27, 4, "no", 2, 18, 6, 3), (0, "female", 32, 10, "yes", 3, 14, 5, 3), (0, "female", 32, 15, "yes", 3, 18, 5, 4), (0, "female", 22, 0.75, "no", 2, 18, 6, 5), (0, "female", 37, 15, "yes", 2, 16, 1, 4), (0, "male", 27, 4, "yes", 4, 20, 5, 5), (0, "male", 27, 4, "no", 1, 20, 5, 4), (0, "female", 27, 10, "yes", 2, 12, 1, 4), (0, "female", 32, 15, "yes", 5, 18, 6, 4), (0, "male", 27, 7, "yes", 5, 12, 5, 3), (0, "male", 52, 15, "yes", 2, 18, 5, 4), (0, "male", 27, 4, "no", 3, 20, 6, 3), (0, "male", 37, 4, "yes", 1, 18, 5, 4), (0, "male", 27, 4, "yes", 4, 14, 5, 4), (0, "female", 52, 15, "yes", 5, 12, 1, 3), (0, "female", 57, 15, "yes", 4, 16, 6, 4), (0, "male", 27, 7, "yes", 1, 16, 5, 4), (0, "male", 37, 7, "yes", 4, 20, 6, 3), (0, "male", 22, 0.75, "no", 2, 14, 4, 3), (0, "male", 32, 4, "yes", 2, 18, 5, 3), (0, "male", 37, 15, "yes", 4, 20, 6, 3), (0, "male", 22, 0.75, "yes", 2, 14, 4, 3), (0, "male", 42, 15, "yes", 4, 20, 6, 3), (0, "female", 52, 15, "yes", 5, 17, 1, 1), (0, "female", 37, 15, "yes", 4, 14, 1, 2), (0, "male", 27, 7, "yes", 4, 14, 5, 3), (0, "male", 32, 4, "yes", 2, 16, 5, 5), (0, "female", 27, 4, "yes", 2, 18, 6, 5), (0, "female", 27, 4, "yes", 2, 18, 5, 5), (0, "male", 37, 15, "yes", 5, 18, 6, 5), (0, "female", 47, 15, "yes", 5, 12, 5, 4), (0, "female", 32, 10, "yes", 3, 17, 1, 4), (0, "female", 27, 1.5, "yes", 4, 17, 1, 2), (0, "female", 57, 15, "yes", 2, 18, 5, 2), (0, "female", 22, 1.5, "no", 4, 14, 5, 4), (0, "male", 42, 15, "yes", 3, 14, 3, 4), (0, "male", 57, 15, "yes", 4, 9, 2, 2), (0, "male", 57, 15, "yes", 4, 20, 6, 5), (0, "female", 22, 0.125, "no", 4, 14, 4, 5), (0, "female", 32, 10, "yes", 4, 14, 1, 5), (0, "female", 42, 15, "yes", 3, 18, 5, 4), (0, "female", 27, 1.5, "no", 2, 18, 6, 5), (0, "male", 32, 0.125, "yes", 2, 18, 5, 2), (0, "female", 27, 4, "no", 3, 16, 5, 4), (0, "female", 27, 10, "yes", 2, 16, 1, 4), (0, "female", 32, 7, "yes", 4, 16, 1, 3), (0, "female", 37, 15, "yes", 4, 14, 5, 4), (0, "female", 42, 15, "yes", 5, 17, 6, 2), (0, "male", 32, 1.5, "yes", 4, 14, 6, 5), (0, "female", 32, 4, "yes", 3, 17, 5, 3), (0, "female", 37, 7, "no", 4, 18, 5, 5), (0, "female", 22, 0.417, "yes", 3, 14, 3, 5), (0, "female", 27, 7, "yes", 4, 14, 1, 5), (0, "male", 27, 0.75, "no", 3, 16, 5, 5), (0, "male", 27, 4, "yes", 2, 20, 5, 5), (0, "male", 32, 10, "yes", 4, 16, 4, 5), (0, "male", 32, 15, "yes", 1, 14, 5, 5), (0, "male", 22, 0.75, "no", 3, 17, 4, 5), (0, "female", 27, 7, "yes", 4, 17, 1, 4), (0, "male", 27, 0.417, "yes", 4, 20, 5, 4), (0, "male", 37, 15, "yes", 4, 20, 5, 4), (0, "female", 37, 15, "yes", 2, 14, 1, 3), (0, "male", 22, 4, "yes", 1, 18, 5, 4), (0, "male", 37, 15, "yes", 4, 17, 5, 3), (0, "female", 22, 1.5, "no", 2, 14, 4, 5), (0, "male", 52, 15, "yes", 4, 14, 6, 2), (0, "female", 22, 1.5, "no", 4, 17, 5, 5), (0, "male", 32, 4, "yes", 5, 14, 3, 5), (0, "male", 32, 4, "yes", 2, 14, 3, 5), (0, "female", 22, 1.5, "no", 3, 16, 6, 5), (0, "male", 27, 0.75, "no", 2, 18, 3, 3), (0, "female", 22, 7, "yes", 2, 14, 5, 2), (0, "female", 27, 0.75, "no", 2, 17, 5, 3), (0, "female", 37, 15, "yes", 4, 12, 1, 2), (0, "female", 22, 1.5, "no", 1, 14, 1, 5), (0, "female", 37, 10, "no", 2, 12, 4, 4), (0, "female", 37, 15, "yes", 4, 18, 5, 3), (0, "female", 42, 15, "yes", 3, 12, 3, 3), (0, "male", 22, 4, "no", 2, 18, 5, 5), (0, "male", 52, 7, "yes", 2, 20, 6, 2), (0, "male", 27, 0.75, "no", 2, 17, 5, 5), (0, "female", 27, 4, "no", 2, 17, 4, 5), (0, "male", 42, 1.5, "no", 5, 20, 6, 5), (0, "male", 22, 1.5, "no", 4, 17, 6, 5), (0, "male", 22, 4, "no", 4, 17, 5, 3), (0, "female", 22, 4, "yes", 1, 14, 5, 4), (0, "male", 37, 15, "yes", 5, 20, 4, 5), (0, "female", 37, 10, "yes", 3, 16, 6, 3), (0, "male", 42, 15, "yes", 4, 17, 6, 5), (0, "female", 47, 15, "yes", 4, 17, 5, 5), (0, "male", 22, 1.5, "no", 4, 16, 5, 4), (0, "female", 32, 10, "yes", 3, 12, 1, 4), (0, "female", 22, 7, "yes", 1, 14, 3, 5), (0, "female", 32, 10, "yes", 4, 17, 5, 4), (0, "male", 27, 1.5, "yes", 2, 16, 2, 4), (0, "male", 37, 15, "yes", 4, 14, 5, 5), (0, "male", 42, 4, "yes", 3, 14, 4, 5), (0, "female", 37, 15, "yes", 5, 14, 5, 4), (0, "female", 32, 7, "yes", 4, 17, 5, 5), (0, "female", 42, 15, "yes", 4, 18, 6, 5), (0, "male", 27, 4, "no", 4, 18, 6, 4), (0, "male", 22, 0.75, "no", 4, 18, 6, 5), (0, "male", 27, 4, "yes", 4, 14, 5, 3), (0, "female", 22, 0.75, "no", 5, 18, 1, 5), (0, "female", 52, 15, "yes", 5, 9, 5, 5), (0, "male", 32, 10, "yes", 3, 14, 5, 5), (0, "female", 37, 15, "yes", 4, 16, 4, 4), (0, "male", 32, 7, "yes", 2, 20, 5, 4), (0, "female", 42, 15, "yes", 3, 18, 1, 4), (0, "male", 32, 15, "yes", 1, 16, 5, 5), (0, "male", 27, 4, "yes", 3, 18, 5, 5), (0, "female", 32, 15, "yes", 4, 12, 3, 4), (0, "male", 22, 0.75, "yes", 3, 14, 2, 4), (0, "female", 22, 1.5, "no", 3, 16, 5, 3), (0, "female", 42, 15, "yes", 4, 14, 3, 5), (0, "female", 52, 15, "yes", 3, 16, 5, 4), (0, "male", 37, 15, "yes", 5, 20, 6, 4), (0, "female", 47, 15, "yes", 4, 12, 2, 3), (0, "male", 57, 15, "yes", 2, 20, 6, 4), (0, "male", 32, 7, "yes", 4, 17, 5, 5), (0, "female", 27, 7, "yes", 4, 17, 1, 4), (0, "male", 22, 1.5, "no", 1, 18, 6, 5), (0, "female", 22, 4, "yes", 3, 9, 1, 4), (0, "female", 22, 1.5, "no", 2, 14, 1, 5), (0, "male", 42, 15, "yes", 2, 20, 6, 4), (0, "male", 57, 15, "yes", 4, 9, 2, 4), (0, "female", 27, 7, "yes", 2, 18, 1, 5), (0, "female", 22, 4, "yes", 3, 14, 1, 5), (0, "male", 37, 15, "yes", 4, 14, 5, 3), (0, "male", 32, 7, "yes", 1, 18, 6, 4), (0, "female", 22, 1.5, "no", 2, 14, 5, 5), (0, "female", 22, 1.5, "yes", 3, 12, 1, 3), (0, "male", 52, 15, "yes", 2, 14, 5, 5), (0, "female", 37, 15, "yes", 2, 14, 1, 1), (0, "female", 32, 10, "yes", 2, 14, 5, 5), (0, "male", 42, 15, "yes", 4, 20, 4, 5), (0, "female", 27, 4, "yes", 3, 18, 4, 5), (0, "male", 37, 15, "yes", 4, 20, 6, 5), (0, "male", 27, 1.5, "no", 3, 18, 5, 5), (0, "female", 22, 0.125, "no", 2, 16, 6, 3), (0, "male", 32, 10, "yes", 2, 20, 6, 3), (0, "female", 27, 4, "no", 4, 18, 5, 4), (0, "female", 27, 7, "yes", 2, 12, 5, 1), (0, "male", 32, 4, "yes", 5, 18, 6, 3), (0, "female", 37, 15, "yes", 2, 17, 5, 5), (0, "male", 47, 15, "no", 4, 20, 6, 4), (0, "male", 27, 1.5, "no", 1, 18, 5, 5), (0, "male", 37, 15, "yes", 4, 20, 6, 4), (0, "female", 32, 15, "yes", 4, 18, 1, 4), (0, "female", 32, 7, "yes", 4, 17, 5, 4), (0, "female", 42, 15, "yes", 3, 14, 1, 3), (0, "female", 27, 7, "yes", 3, 16, 1, 4), (0, "male", 27, 1.5, "no", 3, 16, 4, 2), (0, "male", 22, 1.5, "no", 3, 16, 3, 5), (0, "male", 27, 4, "yes", 3, 16, 4, 2), (0, "female", 27, 7, "yes", 3, 12, 1, 2), (0, "female", 37, 15, "yes", 2, 18, 5, 4), (0, "female", 37, 7, "yes", 3, 14, 4, 4), (0, "male", 22, 1.5, "no", 2, 16, 5, 5), (0, "male", 37, 15, "yes", 5, 20, 5, 4), (0, "female", 22, 1.5, "no", 4, 16, 5, 3), (0, "female", 32, 10, "yes", 4, 16, 1, 5), (0, "male", 27, 4, "no", 2, 17, 5, 3), (0, "female", 22, 0.417, "no", 4, 14, 5, 5), (0, "female", 27, 4, "no", 2, 18, 5, 5), (0, "male", 37, 15, "yes", 4, 18, 5, 3), (0, "male", 37, 10, "yes", 5, 20, 7, 4), (0, "female", 27, 7, "yes", 2, 14, 4, 2), (0, "male", 32, 4, "yes", 2, 16, 5, 5), (0, "male", 32, 4, "yes", 2, 16, 6, 4), (0, "male", 22, 1.5, "no", 3, 18, 4, 5), (0, "female", 22, 4, "yes", 4, 14, 3, 4), (0, "female", 17.5, 0.75, "no", 2, 18, 5, 4), (0, "male", 32, 10, "yes", 4, 20, 4, 5), (0, "female", 32, 0.75, "no", 5, 14, 3, 3), (0, "male", 37, 15, "yes", 4, 17, 5, 3), (0, "male", 32, 4, "no", 3, 14, 4, 5), (0, "female", 27, 1.5, "no", 2, 17, 3, 2), (0, "female", 22, 7, "yes", 4, 14, 1, 5), (0, "male", 47, 15, "yes", 5, 14, 6, 5), (0, "male", 27, 4, "yes", 1, 16, 4, 4), (0, "female", 37, 15, "yes", 5, 14, 1, 3), (0, "male", 42, 4, "yes", 4, 18, 5, 5), (0, "female", 32, 4, "yes", 2, 14, 1, 5), (0, "male", 52, 15, "yes", 2, 14, 7, 4), (0, "female", 22, 1.5, "no", 2, 16, 1, 4), (0, "male", 52, 15, "yes", 4, 12, 2, 4), (0, "female", 22, 0.417, "no", 3, 17, 1, 5), (0, "female", 22, 1.5, "no", 2, 16, 5, 5), (0, "male", 27, 4, "yes", 4, 20, 6, 4), (0, "female", 32, 15, "yes", 4, 14, 1, 5), (0, "female", 27, 1.5, "no", 2, 16, 3, 5), (0, "male", 32, 4, "no", 1, 20, 6, 5), (0, "male", 37, 15, "yes", 3, 20, 6, 4), (0, "female", 32, 10, "no", 2, 16, 6, 5), (0, "female", 32, 10, "yes", 5, 14, 5, 5), (0, "male", 37, 1.5, "yes", 4, 18, 5, 3), (0, "male", 32, 1.5, "no", 2, 18, 4, 4), (0, "female", 32, 10, "yes", 4, 14, 1, 4), (0, "female", 47, 15, "yes", 4, 18, 5, 4), (0, "female", 27, 10, "yes", 5, 12, 1, 5), (0, "male", 27, 4, "yes", 3, 16, 4, 5), (0, "female", 37, 15, "yes", 4, 12, 4, 2), (0, "female", 27, 0.75, "no", 4, 16, 5, 5), (0, "female", 37, 15, "yes", 4, 16, 1, 5), (0, "female", 32, 15, "yes", 3, 16, 1, 5), (0, "female", 27, 10, "yes", 2, 16, 1, 5), (0, "male", 27, 7, "no", 2, 20, 6, 5), (0, "female", 37, 15, "yes", 2, 14, 1, 3), (0, "male", 27, 1.5, "yes", 2, 17, 4, 4), (0, "female", 22, 0.75, "yes", 2, 14, 1, 5), (0, "male", 22, 4, "yes", 4, 14, 2, 4), (0, "male", 42, 0.125, "no", 4, 17, 6, 4), (0, "male", 27, 1.5, "yes", 4, 18, 6, 5), (0, "male", 27, 7, "yes", 3, 16, 6, 3), (0, "female", 52, 15, "yes", 4, 14, 1, 3), (0, "male", 27, 1.5, "no", 5, 20, 5, 2), (0, "female", 27, 1.5, "no", 2, 16, 5, 5), (0, "female", 27, 1.5, "no", 3, 17, 5, 5), (0, "male", 22, 0.125, "no", 5, 16, 4, 4), (0, "female", 27, 4, "yes", 4, 16, 1, 5), (0, "female", 27, 4, "yes", 4, 12, 1, 5), (0, "female", 47, 15, "yes", 2, 14, 5, 5), (0, "female", 32, 15, "yes", 3, 14, 5, 3), (0, "male", 42, 7, "yes", 2, 16, 5, 5), (0, "male", 22, 0.75, "no", 4, 16, 6, 4), (0, "male", 27, 0.125, "no", 3, 20, 6, 5), (0, "male", 32, 10, "yes", 3, 20, 6, 5), (0, "female", 22, 0.417, "no", 5, 14, 4, 5), (0, "female", 47, 15, "yes", 5, 14, 1, 4), (0, "female", 32, 10, "yes", 3, 14, 1, 5), (0, "male", 57, 15, "yes", 4, 17, 5, 5), (0, "male", 27, 4, "yes", 3, 20, 6, 5), (0, "female", 32, 7, "yes", 4, 17, 1, 5), (0, "female", 37, 10, "yes", 4, 16, 1, 5), (0, "female", 32, 10, "yes", 1, 18, 1, 4), (0, "female", 22, 4, "no", 3, 14, 1, 4), (0, "female", 27, 7, "yes", 4, 14, 3, 2), (0, "male", 57, 15, "yes", 5, 18, 5, 2), (0, "male", 32, 7, "yes", 2, 18, 5, 5), (0, "female", 27, 1.5, "no", 4, 17, 1, 3), (0, "male", 22, 1.5, "no", 4, 14, 5, 5), (0, "female", 22, 1.5, "yes", 4, 14, 5, 4), (0, "female", 32, 7, "yes", 3, 16, 1, 5), (0, "female", 47, 15, "yes", 3, 16, 5, 4), (0, "female", 22, 0.75, "no", 3, 16, 1, 5), (0, "female", 22, 1.5, "yes", 2, 14, 5, 5), (0, "female", 27, 4, "yes", 1, 16, 5, 5), (0, "male", 52, 15, "yes", 4, 16, 5, 5), (0, "male", 32, 10, "yes", 4, 20, 6, 5), (0, "male", 47, 15, "yes", 4, 16, 6, 4), (0, "female", 27, 7, "yes", 2, 14, 1, 2), (0, "female", 22, 1.5, "no", 4, 14, 4, 5), (0, "female", 32, 10, "yes", 2, 16, 5, 4), (0, "female", 22, 0.75, "no", 2, 16, 5, 4), (0, "female", 22, 1.5, "no", 2, 16, 5, 5), (0, "female", 42, 15, "yes", 3, 18, 6, 4), (0, "female", 27, 7, "yes", 5, 14, 4, 5), (0, "male", 42, 15, "yes", 4, 16, 4, 4), (0, "female", 57, 15, "yes", 3, 18, 5, 2), (0, "male", 42, 15, "yes", 3, 18, 6, 2), (0, "female", 32, 7, "yes", 2, 14, 1, 2), (0, "male", 22, 4, "no", 5, 12, 4, 5), (0, "female", 22, 1.5, "no", 1, 16, 6, 5), (0, "female", 22, 0.75, "no", 1, 14, 4, 5), (0, "female", 32, 15, "yes", 4, 12, 1, 5), (0, "male", 22, 1.5, "no", 2, 18, 5, 3), (0, "male", 27, 4, "yes", 5, 17, 2, 5), (0, "female", 27, 4, "yes", 4, 12, 1, 5), (0, "male", 42, 15, "yes", 5, 18, 5, 4), (0, "male", 32, 1.5, "no", 2, 20, 7, 3), (0, "male", 57, 15, "no", 4, 9, 3, 1), (0, "male", 37, 7, "no", 4, 18, 5, 5), (0, "male", 52, 15, "yes", 2, 17, 5, 4), (0, "male", 47, 15, "yes", 4, 17, 6, 5), (0, "female", 27, 7, "no", 2, 17, 5, 4), (0, "female", 27, 7, "yes", 4, 14, 5, 5), (0, "female", 22, 4, "no", 2, 14, 3, 3), (0, "male", 37, 7, "yes", 2, 20, 6, 5), (0, "male", 27, 7, "no", 4, 12, 4, 3), (0, "male", 42, 10, "yes", 4, 18, 6, 4), (0, "female", 22, 1.5, "no", 3, 14, 1, 5), (0, "female", 22, 4, "yes", 2, 14, 1, 3), (0, "female", 57, 15, "no", 4, 20, 6, 5), (0, "male", 37, 15, "yes", 4, 14, 4, 3), (0, "female", 27, 7, "yes", 3, 18, 5, 5), (0, "female", 17.5, 10, "no", 4, 14, 4, 5), (0, "male", 22, 4, "yes", 4, 16, 5, 5), (0, "female", 27, 4, "yes", 2, 16, 1, 4), (0, "female", 37, 15, "yes", 2, 14, 5, 1), (0, "female", 22, 1.5, "no", 5, 14, 1, 4), (0, "male", 27, 7, "yes", 2, 20, 5, 4), (0, "male", 27, 4, "yes", 4, 14, 5, 5), (0, "male", 22, 0.125, "no", 1, 16, 3, 5), (0, "female", 27, 7, "yes", 4, 14, 1, 4), (0, "female", 32, 15, "yes", 5, 16, 5, 3), (0, "male", 32, 10, "yes", 4, 18, 5, 4), (0, "female", 32, 15, "yes", 2, 14, 3, 4), (0, "female", 22, 1.5, "no", 3, 17, 5, 5), (0, "male", 27, 4, "yes", 4, 17, 4, 4), (0, "female", 52, 15, "yes", 5, 14, 1, 5), (0, "female", 27, 7, "yes", 2, 12, 1, 2), (0, "female", 27, 7, "yes", 3, 12, 1, 4), (0, "female", 42, 15, "yes", 2, 14, 1, 4), (0, "female", 42, 15, "yes", 4, 14, 5, 4), (0, "male", 27, 7, "yes", 4, 14, 3, 3), (0, "male", 27, 7, "yes", 2, 20, 6, 2), (0, "female", 42, 15, "yes", 3, 12, 3, 3), (0, "male", 27, 4, "yes", 3, 16, 3, 5), (0, "female", 27, 7, "yes", 3, 14, 1, 4), (0, "female", 22, 1.5, "no", 2, 14, 4, 5), (0, "female", 27, 4, "yes", 4, 14, 1, 4), (0, "female", 22, 4, "no", 4, 14, 5, 5), (0, "female", 22, 1.5, "no", 2, 16, 4, 5), (0, "male", 47, 15, "no", 4, 14, 5, 4), (0, "male", 37, 10, "yes", 2, 18, 6, 2), (0, "male", 37, 15, "yes", 3, 17, 5, 4), (0, "female", 27, 4, "yes", 2, 16, 1, 4), (3, "male", 27, 1.5, "no", 3, 18, 4, 4), (3, "female", 27, 4, "yes", 3, 17, 1, 5), (7, "male", 37, 15, "yes", 5, 18, 6, 2), (12, "female", 32, 10, "yes", 3, 17, 5, 2), (1, "male", 22, 0.125, "no", 4, 16, 5, 5), (1, "female", 22, 1.5, "yes", 2, 14, 1, 5), (12, "male", 37, 15, "yes", 4, 14, 5, 2), (7, "female", 22, 1.5, "no", 2, 14, 3, 4), (2, "male", 37, 15, "yes", 2, 18, 6, 4), (3, "female", 32, 15, "yes", 4, 12, 3, 2), (1, "female", 37, 15, "yes", 4, 14, 4, 2), (7, "female", 42, 15, "yes", 3, 17, 1, 4), (12, "female", 42, 15, "yes", 5, 9, 4, 1), (12, "male", 37, 10, "yes", 2, 20, 6, 2), (12, "female", 32, 15, "yes", 3, 14, 1, 2), (3, "male", 27, 4, "no", 1, 18, 6, 5), (7, "male", 37, 10, "yes", 2, 18, 7, 3), (7, "female", 27, 4, "no", 3, 17, 5, 5), (1, "male", 42, 15, "yes", 4, 16, 5, 5), (1, "female", 47, 15, "yes", 5, 14, 4, 5), (7, "female", 27, 4, "yes", 3, 18, 5, 4), (1, "female", 27, 7, "yes", 5, 14, 1, 4), (12, "male", 27, 1.5, "yes", 3, 17, 5, 4), (12, "female", 27, 7, "yes", 4, 14, 6, 2), (3, "female", 42, 15, "yes", 4, 16, 5, 4), (7, "female", 27, 10, "yes", 4, 12, 7, 3), (1, "male", 27, 1.5, "no", 2, 18, 5, 2), (1, "male", 32, 4, "no", 4, 20, 6, 4), (1, "female", 27, 7, "yes", 3, 14, 1, 3), (3, "female", 32, 10, "yes", 4, 14, 1, 4), (3, "male", 27, 4, "yes", 2, 18, 7, 2), (1, "female", 17.5, 0.75, "no", 5, 14, 4, 5), (1, "female", 32, 10, "yes", 4, 18, 1, 5), (7, "female", 32, 7, "yes", 2, 17, 6, 4), (7, "male", 37, 15, "yes", 2, 20, 6, 4), (7, "female", 37, 10, "no", 1, 20, 5, 3), (12, "female", 32, 10, "yes", 2, 16, 5, 5), (7, "male", 52, 15, "yes", 2, 20, 6, 4), (7, "female", 42, 15, "yes", 1, 12, 1, 3), (1, "male", 52, 15, "yes", 2, 20, 6, 3), (2, "male", 37, 15, "yes", 3, 18, 6, 5), (12, "female", 22, 4, "no", 3, 12, 3, 4), (12, "male", 27, 7, "yes", 1, 18, 6, 2), (1, "male", 27, 4, "yes", 3, 18, 5, 5), (12, "male", 47, 15, "yes", 4, 17, 6, 5), (12, "female", 42, 15, "yes", 4, 12, 1, 1), (7, "male", 27, 4, "no", 3, 14, 3, 4), (7, "female", 32, 7, "yes", 4, 18, 4, 5), (1, "male", 32, 0.417, "yes", 3, 12, 3, 4), (3, "male", 47, 15, "yes", 5, 16, 5, 4), (12, "male", 37, 15, "yes", 2, 20, 5, 4), (7, "male", 22, 4, "yes", 2, 17, 6, 4), (1, "male", 27, 4, "no", 2, 14, 4, 5), (7, "female", 52, 15, "yes", 5, 16, 1, 3), (1, "male", 27, 4, "no", 3, 14, 3, 3), (1, "female", 27, 10, "yes", 4, 16, 1, 4), (1, "male", 32, 7, "yes", 3, 14, 7, 4), (7, "male", 32, 7, "yes", 2, 18, 4, 1), (3, "male", 22, 1.5, "no", 1, 14, 3, 2), (7, "male", 22, 4, "yes", 3, 18, 6, 4), (7, "male", 42, 15, "yes", 4, 20, 6, 4), (2, "female", 57, 15, "yes", 1, 18, 5, 4), (7, "female", 32, 4, "yes", 3, 18, 5, 2), (1, "male", 27, 4, "yes", 1, 16, 4, 4), (7, "male", 32, 7, "yes", 4, 16, 1, 4), (2, "male", 57, 15, "yes", 1, 17, 4, 4), (7, "female", 42, 15, "yes", 4, 14, 5, 2), (7, "male", 37, 10, "yes", 1, 18, 5, 3), (3, "male", 42, 15, "yes", 3, 17, 6, 1), (1, "female", 52, 15, "yes", 3, 14, 4, 4), (2, "female", 27, 7, "yes", 3, 17, 5, 3), (12, "male", 32, 7, "yes", 2, 12, 4, 2), (1, "male", 22, 4, "no", 4, 14, 2, 5), (3, "male", 27, 7, "yes", 3, 18, 6, 4), (12, "female", 37, 15, "yes", 1, 18, 5, 5), (7, "female", 32, 15, "yes", 3, 17, 1, 3), (7, "female", 27, 7, "no", 2, 17, 5, 5), (1, "female", 32, 7, "yes", 3, 17, 5, 3), (1, "male", 32, 1.5, "yes", 2, 14, 2, 4), (12, "female", 42, 15, "yes", 4, 14, 1, 2), (7, "male", 32, 10, "yes", 3, 14, 5, 4), (7, "male", 37, 4, "yes", 1, 20, 6, 3), (1, "female", 27, 4, "yes", 2, 16, 5, 3), (12, "female", 42, 15, "yes", 3, 14, 4, 3), (1, "male", 27, 10, "yes", 5, 20, 6, 5), (12, "male", 37, 10, "yes", 2, 20, 6, 2), (12, "female", 27, 7, "yes", 1, 14, 3, 3), (3, "female", 27, 7, "yes", 4, 12, 1, 2), (3, "male", 32, 10, "yes", 2, 14, 4, 4), (12, "female", 17.5, 0.75, "yes", 2, 12, 1, 3), (12, "female", 32, 15, "yes", 3, 18, 5, 4), (2, "female", 22, 7, "no", 4, 14, 4, 3), (1, "male", 32, 7, "yes", 4, 20, 6, 5), (7, "male", 27, 4, "yes", 2, 18, 6, 2), (1, "female", 22, 1.5, "yes", 5, 14, 5, 3), (12, "female", 32, 15, "no", 3, 17, 5, 1), (12, "female", 42, 15, "yes", 2, 12, 1, 2), (7, "male", 42, 15, "yes", 3, 20, 5, 4), (12, "male", 32, 10, "no", 2, 18, 4, 2), (12, "female", 32, 15, "yes", 3, 9, 1, 1), (7, "male", 57, 15, "yes", 5, 20, 4, 5), (12, "male", 47, 15, "yes", 4, 20, 6, 4), (2, "female", 42, 15, "yes", 2, 17, 6, 3), (12, "male", 37, 15, "yes", 3, 17, 6, 3), (12, "male", 37, 15, "yes", 5, 17, 5, 2), (7, "male", 27, 10, "yes", 2, 20, 6, 4), (2, "male", 37, 15, "yes", 2, 16, 5, 4), (12, "female", 32, 15, "yes", 1, 14, 5, 2), (7, "male", 32, 10, "yes", 3, 17, 6, 3), (2, "male", 37, 15, "yes", 4, 18, 5, 1), (7, "female", 27, 1.5, "no", 2, 17, 5, 5), (3, "female", 47, 15, "yes", 2, 17, 5, 2), (12, "male", 37, 15, "yes", 2, 17, 5, 4), (12, "female", 27, 4, "no", 2, 14, 5, 5), (2, "female", 27, 10, "yes", 4, 14, 1, 5), (1, "female", 22, 4, "yes", 3, 16, 1, 3), (12, "male", 52, 7, "no", 4, 16, 5, 5), (2, "female", 27, 4, "yes", 1, 16, 3, 5), (7, "female", 37, 15, "yes", 2, 17, 6, 4), (2, "female", 27, 4, "no", 1, 17, 3, 1), (12, "female", 17.5, 0.75, "yes", 2, 12, 3, 5), (7, "female", 32, 15, "yes", 5, 18, 5, 4), (7, "female", 22, 4, "no", 1, 16, 3, 5), (2, "male", 32, 4, "yes", 4, 18, 6, 4), (1, "female", 22, 1.5, "yes", 3, 18, 5, 2), (3, "female", 42, 15, "yes", 2, 17, 5, 4), (1, "male", 32, 7, "yes", 4, 16, 4, 4), (12, "male", 37, 15, "no", 3, 14, 6, 2), (1, "male", 42, 15, "yes", 3, 16, 6, 3), (1, "male", 27, 4, "yes", 1, 18, 5, 4), (2, "male", 37, 15, "yes", 4, 20, 7, 3), (7, "male", 37, 15, "yes", 3, 20, 6, 4), (3, "male", 22, 1.5, "no", 2, 12, 3, 3), (3, "male", 32, 4, "yes", 3, 20, 6, 2), (2, "male", 32, 15, "yes", 5, 20, 6, 5), (12, "female", 52, 15, "yes", 1, 18, 5, 5), (12, "male", 47, 15, "no", 1, 18, 6, 5), (3, "female", 32, 15, "yes", 4, 16, 4, 4), (7, "female", 32, 15, "yes", 3, 14, 3, 2), (7, "female", 27, 7, "yes", 4, 16, 1, 2), (12, "male", 42, 15, "yes", 3, 18, 6, 2), (7, "female", 42, 15, "yes", 2, 14, 3, 2), (12, "male", 27, 7, "yes", 2, 17, 5, 4), (3, "male", 32, 10, "yes", 4, 14, 4, 3), (7, "male", 47, 15, "yes", 3, 16, 4, 2), (1, "male", 22, 1.5, "yes", 1, 12, 2, 5), (7, "female", 32, 10, "yes", 2, 18, 5, 4), (2, "male", 32, 10, "yes", 2, 17, 6, 5), (2, "male", 22, 7, "yes", 3, 18, 6, 2), (1, "female", 32, 15, "yes", 3, 14, 1, 5)) val data = dataList.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
GBT建模
data.createOrReplaceTempView("data") // 字符类型转换成数值 val labelWhere = "affairs as label" val genderWhere = "case when gender='female' then 0 else cast(1 as double) end as gender" val childrenWhere = "case when children='no' then 0 else cast(1 as double) end as children" val dataLabelDF = spark.sql(s"select $labelWhere, $genderWhere,age,yearsmarried,$childrenWhere,religiousness,education,occupation,rating from data") val featuresArray = Array("gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating") // 字段转换成特征向量 val assembler = new VectorAssembler().setInputCols(featuresArray).setOutputCol("features") val vecDF: DataFrame = assembler.transform(dataLabelDF) vecDF.show(10, truncate = false) // 将数据分为训练和测试集(30%进行测试) val Array(trainingDF, testDF) = vecDF.randomSplit(Array(0.7, 0.3)) // 自动识别分类的特征,并对它们进行索引 // 具有大于5个不同的值的特征被视为连续。 val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(5) // 训练GBT模型 val gbt = new GBTRegressor().setLabelCol("label").setFeaturesCol("indexedFeatures").setImpurity("variance").setLossType("squared").setMaxIter(100).setMinInstancesPerNode(100) // Chain indexer and GBT in a Pipeline. val pipeline = new Pipeline().setStages(Array(featureIndexer, gbt)) // Train model. This also runs the indexer. val model = pipeline.fit(trainingDF) // 做出预测 val predictions = model.transform(testDF) // 预测样本展示 predictions.select("prediction", "label", "features").show(20,false) // 选择(预测标签,实际标签),并计算测试误差。 val evaluator = new RegressionEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("rmse") val rmse = evaluator.evaluate(predictions) println("Root Mean Squared Error (RMSE) on test data = " + rmse) val gbtModel = model.stages(1).asInstanceOf[GBTRegressionModel] println("Learned regression GBT model: " + gbtModel.toDebugString)
代码执行结果
// 预测样本展示 predictions.select("prediction", "label", "features").show(20,false) +--------------------+-----+-------------------------------------+ |prediction |label|features | +--------------------+-----+-------------------------------------+ |0.4101891901517728 |0.0 |[0.0,22.0,0.125,0.0,2.0,14.0,4.0,5.0]| |-0.1761972212866274 |0.0 |[0.0,22.0,0.125,0.0,4.0,12.0,4.0,5.0]| |-0.1761972212866274 |0.0 |[0.0,22.0,0.125,0.0,4.0,14.0,4.0,5.0]| |0.27341988209156776 |0.0 |[0.0,22.0,0.417,1.0,3.0,14.0,3.0,5.0]| |1.3762204060172503 |0.0 |[0.0,22.0,0.75,0.0,2.0,12.0,1.0,3.0] | |0.7076853285807452 |0.0 |[0.0,22.0,0.75,0.0,3.0,16.0,5.0,4.0] | |-0.03713901460785563|0.0 |[0.0,22.0,0.75,0.0,4.0,16.0,1.0,5.0] | |-0.06232021237014856|0.0 |[0.0,22.0,0.75,0.0,5.0,14.0,3.0,5.0] | |1.3658576179015465 |0.0 |[0.0,22.0,1.5,0.0,2.0,17.0,5.0,4.0] | |0.5855203584610474 |0.0 |[0.0,22.0,1.5,0.0,2.0,18.0,5.0,5.0] | |1.3423069921702913 |0.0 |[0.0,22.0,1.5,0.0,3.0,16.0,5.0,3.0] | |-0.04277366447290868|0.0 |[0.0,22.0,1.5,0.0,5.0,16.0,5.0,5.0] | |0.15390822331003562 |0.0 |[0.0,22.0,1.5,1.0,3.0,16.0,5.0,5.0] | |-0.05759270231176094|0.0 |[0.0,22.0,1.5,1.0,4.0,12.0,1.0,5.0] | |0.9937700279999649 |0.0 |[0.0,27.0,4.0,0.0,3.0,17.0,5.0,5.0] | |0.07881499915541987 |0.0 |[0.0,27.0,4.0,0.0,4.0,14.0,5.0,4.0] | |0.8853324368229462 |0.0 |[0.0,27.0,4.0,1.0,2.0,18.0,5.0,5.0] | |2.470441722865642 |0.0 |[0.0,27.0,4.0,1.0,2.0,18.0,6.0,1.0] | |1.8994848597314158 |0.0 |[0.0,27.0,4.0,1.0,3.0,17.0,5.0,4.0] | |1.2016151328027989 |0.0 |[0.0,27.0,7.0,0.0,3.0,16.0,5.0,4.0] | +--------------------+-----+-------------------------------------+ only showing top 20 rows // 选择(预测标签,实际标签),并计算测试误差。 val evaluator = new RegressionEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("rmse") evaluator: org.apache.spark.ml.evaluation.RegressionEvaluator = regEval_ac9cce181927 val rmse = evaluator.evaluate(predictions) rmse: Double = 3.398154308642416 println("Root Mean Squared Error (RMSE) on test data = " + rmse) Root Mean Squared Error (RMSE) on test data = 3.398154308642416 val gbtModel = model.stages(1).asInstanceOf[GBTRegressionModel] gbtModel: org.apache.spark.ml.regression.GBTRegressionModel = GBTRegressionModel (uid=gbtr_fef8e464e0a9) with 100 trees println("Learned regression GBT model: " + gbtModel.toDebugString) Learned regression GBT model: GBTRegressionModel (uid=gbtr_fef8e464e0a9) with 100 trees Tree 0 (weight 1.0): If (feature 7 in {3.0,4.0}) If (feature 5 <= 16.0) Predict: 0.5493827160493827 Else (feature 5 > 16.0) Predict: 1.4025974025974026 Else (feature 7 not in {3.0,4.0}) Predict: 2.3275862068965516 Tree 1 (weight 0.1): If (feature 4 in {3.0,4.0}) Predict: -1.2041803848556716 Else (feature 4 not in {3.0,4.0}) If (feature 2 <= 4.0) Predict: -0.23528687185418157 Else (feature 2 > 4.0) Predict: 2.122676104681004 Tree 2 (weight 0.1): If (feature 7 in {2.0,4.0}) If (feature 4 in {3.0,4.0}) Predict: -1.656323757972103 Else (feature 4 not in {3.0,4.0}) Predict: -0.15543767468869207 Else (feature 7 not in {2.0,4.0}) Predict: 1.0278733947646754 Tree 3 (weight 0.1): If (feature 4 in {3.0,4.0}) Predict: -0.8641507684538178 Else (feature 4 not in {3.0,4.0}) If (feature 2 <= 4.0) Predict: -0.2273383819199587 Else (feature 2 > 4.0) Predict: 1.5798596443417063 Tree 4 (weight 0.1): If (feature 7 in {2.0,4.0}) If (feature 4 in {2.0,3.0}) Predict: -1.236525064691553 Else (feature 4 not in {2.0,3.0}) Predict: 0.012163057801348584 Else (feature 7 not in {2.0,4.0}) Predict: 0.7792547820010268 Tree 5 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.9113096501035378 Else (feature 7 not in {2.0,4.0}) Predict: 0.29094960891340704 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.9943737179675912 Tree 6 (weight 0.1): If (feature 4 in {3.0,4.0}) Predict: -0.5816029069016012 Else (feature 4 not in {3.0,4.0}) If (feature 2 <= 4.0) Predict: -0.20084493904163633 Else (feature 2 > 4.0) Predict: 1.109569351901809 Tree 7 (weight 0.1): If (feature 7 in {2.0,3.0}) If (feature 4 in {3.0,4.0}) Predict: -1.206216468680912 Else (feature 4 not in {3.0,4.0}) Predict: 0.08655545395654013 Else (feature 7 not in {2.0,3.0}) If (feature 1 <= 27.0) Predict: -0.20724446825839268 Else (feature 1 > 27.0) Predict: 1.2660056558164223 Tree 8 (weight 0.1): If (feature 7 in {2.0,4.0}) If (feature 0 in {1.0}) Predict: -1.0182659703495558 Else (feature 0 not in {1.0}) Predict: 0.024231870307628158 Else (feature 7 not in {2.0,4.0}) Predict: 0.5318939487492129 Tree 9 (weight 0.1): If (feature 7 in {2.0,3.0}) If (feature 4 in {3.0,4.0}) Predict: -0.9976742554437054 Else (feature 4 not in {3.0,4.0}) Predict: 0.0200794486795141 Else (feature 7 not in {2.0,3.0}) If (feature 1 <= 27.0) Predict: -0.12395645984936833 Else (feature 1 > 27.0) Predict: 1.0545881786994915 Tree 10 (weight 0.1): If (feature 7 in {2.0,4.0}) If (feature 0 in {1.0}) Predict: -0.8521104101261413 Else (feature 0 not in {1.0}) Predict: 4.984317868844511E-4 Else (feature 7 not in {2.0,4.0}) Predict: 0.45849128239680126 Tree 11 (weight 0.1): If (feature 7 in {2.0,3.0}) If (feature 4 in {3.0,4.0}) Predict: -0.8266429201133548 Else (feature 4 not in {3.0,4.0}) Predict: -0.02631141136282202 Else (feature 7 not in {2.0,3.0}) If (feature 1 <= 27.0) Predict: -0.062192679809529076 Else (feature 1 > 27.0) Predict: 0.8790672857730457 Tree 12 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.5817255532116069 Else (feature 7 not in {2.0,4.0}) Predict: 0.22193937162964048 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.5907959823435813 Tree 13 (weight 0.1): If (feature 7 in {2.0,3.0}) If (feature 0 in {0.0}) Predict: -0.7172113654395978 Else (feature 0 not in {0.0}) Predict: 0.006042105742806256 Else (feature 7 not in {2.0,3.0}) If (feature 4 in {2.0,3.0}) Predict: -0.10106364169472773 Else (feature 4 not in {2.0,3.0}) Predict: 0.7978475987081632 Tree 14 (weight 0.1): If (feature 2 <= 4.0) Predict: -0.43106846024675494 Else (feature 2 > 4.0) If (feature 0 in {0.0}) Predict: -0.24358569405700833 Else (feature 0 not in {0.0}) Predict: 0.8430302370437416 Tree 15 (weight 0.1): If (feature 7 in {2.0,4.0}) If (feature 0 in {1.0}) Predict: -0.7548596599426589 Else (feature 0 not in {1.0}) Predict: 0.08592188188354978 Else (feature 7 not in {2.0,4.0}) Predict: 0.3483003891556437 Tree 16 (weight 0.1): If (feature 7 in {2.0,3.0}) If (feature 4 in {3.0,4.0}) Predict: -0.6305692411738641 Else (feature 4 not in {3.0,4.0}) Predict: -0.03294875487717117 Else (feature 7 not in {2.0,3.0}) If (feature 5 <= 16.0) Predict: 0.6769789481885423 Else (feature 5 > 16.0) Predict: -0.09745409631073557 Tree 17 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 5 <= 17.0) If (feature 5 <= 14.0) Predict: -0.08997529948919183 Else (feature 5 > 14.0) Predict: 0.329830215921939 Else (feature 5 > 17.0) Predict: -0.7669351353559263 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.4823947721214674 Tree 18 (weight 0.1): If (feature 2 <= 1.5) Predict: -0.5555885187209292 Else (feature 2 > 1.5) If (feature 7 in {2.0,3.0}) Predict: -0.22796338045378814 Else (feature 7 not in {2.0,3.0}) Predict: 0.6263893424099629 Tree 19 (weight 0.1): If (feature 7 in {2.0,4.0}) If (feature 4 in {1.0,2.0}) Predict: -0.8774721304893098 Else (feature 4 not in {1.0,2.0}) Predict: 0.2508177659024886 Else (feature 7 not in {2.0,4.0}) Predict: 0.3374172716953837 Tree 20 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.6771642657012377 Else (feature 7 not in {2.0,4.0}) Predict: 0.42281474905416766 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.35053210010281294 Tree 21 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 5 <= 17.0) If (feature 5 <= 14.0) Predict: -0.08877452416140048 Else (feature 5 > 14.0) Predict: 0.2745756432464146 Else (feature 5 > 17.0) Predict: -0.6587419697090034 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.43241117032884024 Tree 22 (weight 0.1): If (feature 6 <= 5.0) If (feature 7 in {1.0,2.0,3.0}) Predict: -0.6185527002758889 Else (feature 7 not in {1.0,2.0,3.0}) Predict: 0.45411581627673897 Else (feature 6 > 5.0) Predict: 0.4365068498808643 Tree 23 (weight 0.1): If (feature 2 <= 4.0) Predict: -0.30885690781314273 Else (feature 2 > 4.0) If (feature 0 in {0.0}) Predict: -0.3023921469776914 Else (feature 0 not in {0.0}) Predict: 0.7430519171140063 Tree 24 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.5879792368509512 Else (feature 7 not in {2.0,4.0}) Predict: 0.37672042118327953 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.29665456956343084 Tree 25 (weight 0.1): If (feature 7 in {2.0,3.0}) If (feature 5 <= 16.0) Predict: -0.4358101720832422 Else (feature 5 > 16.0) Predict: 0.004291841246162318 Else (feature 7 not in {2.0,3.0}) If (feature 4 in {2.0,3.0}) Predict: -0.09212211469331538 Else (feature 4 not in {2.0,3.0}) Predict: 0.5390477982838969 Tree 26 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 5 <= 17.0) If (feature 5 <= 14.0) Predict: -0.002870097057736064 Else (feature 5 > 14.0) Predict: 0.24176485735488987 Else (feature 5 > 17.0) Predict: -0.6526018743363831 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.3789197752633368 Tree 27 (weight 0.1): If (feature 2 <= 1.5) Predict: -0.40670356052123396 Else (feature 2 > 1.5) If (feature 5 <= 14.0) Predict: -0.3423186434168276 Else (feature 5 > 14.0) If (feature 1 <= 32.0) Predict: 0.07310002678020948 Else (feature 1 > 32.0) Predict: 0.6220211186229235 Tree 28 (weight 0.1): If (feature 7 in {2.0,3.0}) If (feature 2 <= 7.0) Predict: -0.37077050934682493 Else (feature 2 > 7.0) Predict: -0.013168403089436417 Else (feature 7 not in {2.0,3.0}) If (feature 4 in {1.0,2.0}) Predict: -0.13649988018105869 Else (feature 4 not in {1.0,2.0}) Predict: 0.5307658578968613 Tree 29 (weight 0.1): If (feature 5 <= 17.0) If (feature 2 <= 7.0) Predict: 0.3743438409942865 Else (feature 2 > 7.0) Predict: -0.19784197849605942 Else (feature 5 > 17.0) Predict: -0.26391914047591847 Tree 30 (weight 0.1): If (feature 2 <= 1.5) Predict: -0.3542028568716046 Else (feature 2 > 1.5) If (feature 0 in {0.0}) Predict: -0.20390871143361886 Else (feature 0 not in {0.0}) Predict: 0.41078338397447534 Tree 31 (weight 0.1): If (feature 7 in {2.0,4.0}) If (feature 4 in {1.0,2.0}) Predict: -0.6976532686788715 Else (feature 4 not in {1.0,2.0}) Predict: 0.305128042791237 Else (feature 7 not in {2.0,4.0}) Predict: 0.19996604836748177 Tree 32 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.5026109921920161 Else (feature 7 not in {2.0,4.0}) Predict: 0.2987696061070014 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.2722787792862316 Tree 33 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 5 <= 16.0) Predict: 0.210843945397363 Else (feature 5 > 16.0) Predict: -0.5101274394699526 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.3566655122216068 Tree 34 (weight 0.1): If (feature 7 in {2.0,3.0}) If (feature 5 <= 16.0) Predict: -0.38259410181020964 Else (feature 5 > 16.0) Predict: 0.014040427378239158 Else (feature 7 not in {2.0,3.0}) If (feature 4 in {2.0,3.0}) Predict: -0.0849154281925315 Else (feature 4 not in {2.0,3.0}) Predict: 0.46724301245027106 Tree 35 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 5 <= 16.0) Predict: 0.18214237271776318 Else (feature 5 > 16.0) Predict: -0.4336716289604328 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.299121819193453 Tree 36 (weight 0.1): If (feature 6 <= 5.0) If (feature 7 in {1.0,2.0,3.0}) Predict: -0.46344255624122804 Else (feature 7 not in {1.0,2.0,3.0}) Predict: 0.3640577311836569 Else (feature 6 > 5.0) Predict: 0.29888044555378185 Tree 37 (weight 0.1): If (feature 2 <= 4.0) Predict: -0.21827462552678883 Else (feature 2 > 4.0) If (feature 4 in {1.0,2.0,4.0}) Predict: -0.27188720417988843 Else (feature 4 not in {1.0,2.0,4.0}) Predict: 0.6789439047090412 Tree 38 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.44714482741915457 Else (feature 7 not in {2.0,4.0}) Predict: 0.2834580745796812 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.22803431309861022 Tree 39 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 5 <= 17.0) If (feature 5 <= 14.0) Predict: -0.007567675735672283 Else (feature 5 > 14.0) Predict: 0.19528462943330932 Else (feature 5 > 17.0) Predict: -0.4793181468190617 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.2674592141367692 Tree 40 (weight 0.1): If (feature 6 <= 5.0) If (feature 7 in {1.0,2.0,3.0}) Predict: -0.4058905159858142 Else (feature 7 not in {1.0,2.0,3.0}) Predict: 0.3146287783924926 Else (feature 6 > 5.0) Predict: 0.26675364810481134 Tree 41 (weight 0.1): If (feature 2 <= 4.0) Predict: -0.1962735566727834 Else (feature 2 > 4.0) If (feature 4 in {1.0,2.0,4.0}) Predict: -0.2198867197911281 Else (feature 4 not in {1.0,2.0,4.0}) Predict: 0.5783627397068297 Tree 42 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.40458335821187674 Else (feature 7 not in {2.0,4.0}) Predict: 0.2500008588513438 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.21153528262965707 Tree 43 (weight 0.1): If (feature 0 in {0.0}) If (feature 4 in {1.0,2.0}) Predict: -0.5272784668998509 Else (feature 4 not in {1.0,2.0}) Predict: 0.27964029342808727 Else (feature 0 not in {0.0}) Predict: 0.1521276760243921 Tree 44 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 5 <= 16.0) Predict: 0.15476481680084098 Else (feature 5 > 16.0) Predict: -0.404648885656257 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.20041323422811966 Tree 45 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 2 <= 10.0) Predict: 0.08760703216804985 Else (feature 2 > 10.0) Predict: -0.4363843462222189 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.26125493904601726 Tree 46 (weight 0.1): If (feature 3 in {0.0}) Predict: -0.24273871330852773 Else (feature 3 not in {0.0}) If (feature 1 <= 32.0) Predict: 0.4194956858219603 Else (feature 1 > 32.0) Predict: -0.2641351223987055 Tree 47 (weight 0.1): If (feature 2 <= 4.0) Predict: -0.1842536884228515 Else (feature 2 > 4.0) If (feature 0 in {0.0}) Predict: -0.2556437505158 Else (feature 0 not in {0.0}) Predict: 0.5250957711438612 Tree 48 (weight 0.1): If (feature 5 <= 17.0) If (feature 2 <= 7.0) Predict: 0.3097249980758783 Else (feature 2 > 7.0) Predict: -0.20927194758789183 Else (feature 5 > 17.0) Predict: -0.17974425051995072 Tree 49 (weight 0.1): If (feature 2 <= 7.0) If (feature 4 in {0.0,1.0,4.0}) Predict: -0.4391662932031461 Else (feature 4 not in {0.0,1.0,4.0}) Predict: 0.14899682915441242 Else (feature 2 > 7.0) Predict: 0.17135087498922727 Tree 50 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.34595892539052775 Else (feature 7 not in {2.0,4.0}) Predict: 0.18864305733321962 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.2010882111695174 Tree 51 (weight 0.1): If (feature 2 <= 7.0) If (feature 4 in {0.0,1.0,4.0}) Predict: -0.37928770492554514 Else (feature 4 not in {0.0,1.0,4.0}) Predict: 0.14598978080630404 Else (feature 2 > 7.0) Predict: 0.13789872815456017 Tree 52 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 0 in {0.0}) Predict: -0.3561599449500433 Else (feature 0 not in {0.0}) Predict: 0.13480317862464578 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.20022083229153956 Tree 53 (weight 0.1): If (feature 7 in {0.0,2.0,3.0}) If (feature 2 <= 7.0) Predict: -0.3034759538679022 Else (feature 2 > 7.0) Predict: 0.030832254829924348 Else (feature 7 not in {0.0,2.0,3.0}) If (feature 4 in {2.0,3.0}) Predict: -0.09791161435829351 Else (feature 4 not in {2.0,3.0}) Predict: 0.37430560009039743 Tree 54 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 5 <= 17.0) If (feature 5 <= 14.0) Predict: 0.0032991310676856803 Else (feature 5 > 14.0) Predict: 0.16323825545485057 Else (feature 5 > 17.0) Predict: -0.3944469633207582 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.20930077591956386 Tree 55 (weight 0.1): If (feature 6 <= 5.0) If (feature 7 in {1.0,2.0,3.0}) Predict: -0.3423717432439813 Else (feature 7 not in {1.0,2.0,3.0}) Predict: 0.2845950114476868 Else (feature 6 > 5.0) Predict: 0.20229881713282846 Tree 56 (weight 0.1): If (feature 7 in {0.0,3.0,4.0}) If (feature 4 in {0.0,2.0,4.0}) Predict: -0.34473853796161436 Else (feature 4 not in {0.0,2.0,4.0}) Predict: 0.06509817623441427 Else (feature 7 not in {0.0,3.0,4.0}) Predict: 0.29637410144956194 Tree 57 (weight 0.1): If (feature 4 in {1.0,3.0}) If (feature 7 in {0.0,2.0,4.0}) Predict: -0.4106960501148285 Else (feature 7 not in {0.0,2.0,4.0}) Predict: 0.3067013100269527 Else (feature 4 not in {1.0,3.0}) Predict: 0.14212125967385864 Tree 58 (weight 0.1): If (feature 7 in {0.0,3.0,4.0}) If (feature 2 <= 4.0) Predict: 0.14321927963357617 Else (feature 2 > 4.0) Predict: -0.24134920569281398 Else (feature 7 not in {0.0,3.0,4.0}) Predict: 0.24427269014743427 Tree 59 (weight 0.1): If (feature 2 <= 4.0) Predict: -0.1614525889780999 Else (feature 2 > 4.0) If (feature 4 in {1.0,2.0}) Predict: -0.3282296392038987 Else (feature 4 not in {1.0,2.0}) Predict: 0.4000388393084363 Tree 60 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 5 <= 16.0) Predict: 0.11970240371799991 Else (feature 5 > 16.0) Predict: -0.32629555023475065 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.16650169466955037 Tree 61 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 2 <= 10.0) Predict: 0.0785346253080802 Else (feature 2 > 10.0) Predict: -0.3597426698174828 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.2043621605717289 Tree 62 (weight 0.1): If (feature 2 <= 4.0) Predict: -0.16092189760093678 Else (feature 2 > 4.0) If (feature 4 in {1.0,2.0}) Predict: -0.2777794408515309 Else (feature 4 not in {1.0,2.0}) Predict: 0.3648602619594364 Tree 63 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.28929221043435893 Else (feature 7 not in {2.0,4.0}) Predict: 0.16866103762864476 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.159374360780632 Tree 64 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 2 <= 10.0) Predict: 0.06551610731177633 Else (feature 2 > 10.0) Predict: -0.3256517139452475 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.1947184133018806 Tree 65 (weight 0.1): If (feature 2 <= 7.0) If (feature 4 in {0.0,1.0,4.0}) Predict: -0.3907242793892747 Else (feature 4 not in {0.0,1.0,4.0}) Predict: 0.14983189044748124 Else (feature 2 > 7.0) Predict: 0.14238312259616695 Tree 66 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 0 in {0.0}) Predict: -0.3052694134166843 Else (feature 0 not in {0.0}) Predict: 0.1242437441599561 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.16364917831715908 Tree 67 (weight 0.1): If (feature 2 <= 7.0) If (feature 4 in {0.0,1.0,4.0}) Predict: -0.3374888895457584 Else (feature 4 not in {0.0,1.0,4.0}) Predict: 0.13796807928365779 Else (feature 2 > 7.0) Predict: 0.11799951195954451 Tree 68 (weight 0.1): If (feature 4 in {2.0,3.0}) If (feature 2 <= 7.0) Predict: 0.11037446342692632 Else (feature 2 > 7.0) Predict: -0.3691154257571632 Else (feature 4 not in {2.0,3.0}) If (feature 1 <= 27.0) Predict: -0.1067359768344909 Else (feature 1 > 27.0) Predict: 0.3469652449886723 Tree 69 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 5 <= 16.0) Predict: 0.09765499691255237 Else (feature 5 > 16.0) Predict: -0.2815290474503235 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.14906241645292465 Tree 70 (weight 0.1): If (feature 7 in {0.0,2.0,3.0}) If (feature 5 <= 16.0) Predict: -0.29299461722232156 Else (feature 5 > 16.0) Predict: 0.09747540373437305 Else (feature 7 not in {0.0,2.0,3.0}) If (feature 4 in {1.0,2.0}) Predict: -0.10994079878853985 Else (feature 4 not in {1.0,2.0}) Predict: 0.3523743079378049 Tree 71 (weight 0.1): If (feature 2 <= 7.0) If (feature 0 in {1.0}) Predict: -0.3422083471951224 Else (feature 0 not in {1.0}) Predict: 0.13300441855841866 Else (feature 2 > 7.0) Predict: 0.10695163170240178 Tree 72 (weight 0.1): If (feature 6 <= 5.0) If (feature 7 in {1.0,2.0,3.0}) Predict: -0.31582473516501897 Else (feature 7 not in {1.0,2.0,3.0}) Predict: 0.2796042594325624 Else (feature 6 > 5.0) Predict: 0.16641824158295654 Tree 73 (weight 0.1): If (feature 7 in {0.0,3.0,4.0}) If (feature 2 <= 4.0) Predict: 0.15145985374076318 Else (feature 2 > 4.0) Predict: -0.25337987124956984 Else (feature 7 not in {0.0,3.0,4.0}) Predict: 0.2550491173591116 Tree 74 (weight 0.1): If (feature 3 in {0.0}) Predict: -0.17047319029247388 Else (feature 3 not in {0.0}) If (feature 1 <= 32.0) Predict: 0.35333760032570316 Else (feature 1 > 32.0) Predict: -0.2519783337953501 Tree 75 (weight 0.1): If (feature 2 <= 7.0) If (feature 0 in {1.0}) Predict: -0.31803815956744486 Else (feature 0 not in {1.0}) Predict: 0.07062037654003865 Else (feature 2 > 7.0) Predict: 0.13215020722610155 Tree 76 (weight 0.1): If (feature 2 <= 7.0) If (feature 4 in {0.0,1.0,4.0}) Predict: -0.2849060057188383 Else (feature 4 not in {0.0,1.0,4.0}) Predict: 0.10599732481645478 Else (feature 2 > 7.0) Predict: 0.10572016578088146 Tree 77 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.29204411697391675 Else (feature 7 not in {2.0,4.0}) Predict: 0.17154183331704606 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.1598642924832302 Tree 78 (weight 0.1): If (feature 7 in {0.0,3.0,4.0}) If (feature 2 <= 4.0) Predict: 0.15620197855107712 Else (feature 2 > 4.0) Predict: -0.2358472594212062 Else (feature 7 not in {0.0,3.0,4.0}) Predict: 0.21805292474450014 Tree 79 (weight 0.1): If (feature 2 <= 4.0) Predict: -0.1310122593821202 Else (feature 2 > 4.0) If (feature 0 in {0.0}) Predict: -0.20525206330385296 Else (feature 0 not in {0.0}) Predict: 0.3988936865730646 Tree 80 (weight 0.1): If (feature 6 <= 4.0) Predict: 0.118723210443705 Else (feature 6 > 4.0) If (feature 2 <= 7.0) Predict: -0.5009441711869456 Else (feature 2 > 7.0) Predict: 0.37560154066955664 Tree 81 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 5 <= 16.0) Predict: 0.1011898275621567 Else (feature 5 > 16.0) Predict: -0.27541549529142817 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.1403917694564152 Tree 82 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 2 <= 10.0) Predict: 0.10485592624097106 Else (feature 2 > 10.0) Predict: -0.3561693608362045 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.1550785478603467 Tree 83 (weight 0.1): If (feature 6 <= 5.0) If (feature 7 in {1.0,2.0,3.0}) Predict: -0.29578292364809544 Else (feature 7 not in {1.0,2.0,3.0}) Predict: 0.27307326206821303 Else (feature 6 > 5.0) Predict: 0.14259778729589817 Tree 84 (weight 0.1): If (feature 7 in {0.0,3.0,4.0}) If (feature 2 <= 10.0) If (feature 0 in {1.0}) Predict: -0.4968444641407045 Else (feature 0 not in {1.0}) Predict: 0.039833192482040626 Else (feature 2 > 10.0) Predict: 0.23547722042459557 Else (feature 7 not in {0.0,3.0,4.0}) Predict: 0.20092157887884146 Tree 85 (weight 0.1): If (feature 0 in {0.0}) If (feature 4 in {1.0,2.0}) Predict: -0.41927295132296866 Else (feature 4 not in {1.0,2.0}) Predict: 0.27264426276668075 Else (feature 0 not in {0.0}) Predict: 0.09473118321732256 Tree 86 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.2627520575537636 Else (feature 7 not in {2.0,4.0}) Predict: 0.16852637689996566 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.13242206940974757 Tree 87 (weight 0.1): If (feature 4 in {1.0,3.0,4.0}) If (feature 2 <= 10.0) Predict: 0.0968195867364572 Else (feature 2 > 10.0) Predict: -0.33632764976664026 Else (feature 4 not in {1.0,3.0,4.0}) Predict: 0.15026643957145142 Tree 88 (weight 0.1): If (feature 5 <= 16.0) If (feature 4 in {1.0,2.0}) Predict: -0.5956659813535735 Else (feature 4 not in {1.0,2.0}) Predict: 0.4529037429667299 Else (feature 5 > 16.0) Predict: 0.08159901911739971 Tree 89 (weight 0.1): If (feature 4 in {3.0,4.0}) Predict: -0.12934611014945963 Else (feature 4 not in {3.0,4.0}) If (feature 5 <= 16.0) Predict: -0.40930103952472296 Else (feature 5 > 16.0) Predict: 0.6895088054273292 Tree 90 (weight 0.1): If (feature 5 <= 17.0) If (feature 2 <= 7.0) Predict: 0.34370866252824434 Else (feature 2 > 7.0) Predict: -0.2630177858922842 Else (feature 5 > 17.0) Predict: -0.17338519514465173 Tree 91 (weight 0.1): If (feature 5 <= 17.0) If (feature 4 in {0.0,3.0}) Predict: -0.25104546806534994 Else (feature 4 not in {0.0,3.0}) Predict: 0.2702826069825862 Else (feature 5 > 17.0) Predict: -0.13870815611572082 Tree 92 (weight 0.1): If (feature 2 <= 7.0) If (feature 4 in {0.0,1.0,4.0}) Predict: -0.3031434977322535 Else (feature 4 not in {0.0,1.0,4.0}) Predict: 0.13250771045104892 Else (feature 2 > 7.0) Predict: 0.10098942121784923 Tree 93 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 0 in {0.0}) Predict: -0.2757474131110731 Else (feature 0 not in {0.0}) Predict: 0.13947524024110314 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.12289122084107594 Tree 94 (weight 0.1): If (feature 6 <= 4.0) Predict: 0.11785650049644145 Else (feature 6 > 4.0) If (feature 2 <= 7.0) Predict: -0.45759270568822835 Else (feature 2 > 7.0) Predict: 0.33032979113507405 Tree 95 (weight 0.1): If (feature 5 <= 17.0) If (feature 2 <= 7.0) Predict: 0.305333529673242 Else (feature 2 > 7.0) Predict: -0.2699559779520363 Else (feature 5 > 17.0) Predict: -0.12326900427506793 Tree 96 (weight 0.1): If (feature 4 in {2.0,3.0,4.0}) If (feature 7 in {2.0,4.0}) Predict: -0.2082822352931695 Else (feature 7 not in {2.0,4.0}) Predict: 0.1344687038228447 Else (feature 4 not in {2.0,3.0,4.0}) Predict: 0.10426390938251325 Tree 97 (weight 0.1): If (feature 7 in {0.0,2.0,3.0}) If (feature 4 in {0.0,3.0,4.0}) Predict: -0.24041237137909066 Else (feature 4 not in {0.0,3.0,4.0}) Predict: 0.10786460999909507 Else (feature 7 not in {0.0,2.0,3.0}) If (feature 4 in {1.0,2.0}) Predict: -0.12345549505611093 Else (feature 4 not in {1.0,2.0}) Predict: 0.3042271274045207 Tree 98 (weight 0.1): If (feature 7 in {0.0,3.0,4.0}) If (feature 4 in {0.0,2.0,4.0}) Predict: -0.3300305557432017 Else (feature 4 not in {0.0,2.0,4.0}) Predict: 0.11539664128561841 Else (feature 7 not in {0.0,3.0,4.0}) Predict: 0.18650654204571715 Tree 99 (weight 0.1): If (feature 4 in {1.0,3.0}) If (feature 1 <= 27.0) Predict: -0.17881873531148437 Else (feature 1 > 27.0) Predict: 0.021947906677333283 Else (feature 4 not in {1.0,3.0}) Predict: 0.11104367501262459