• Spark Gradient-boosted trees (GBTs)梯度提升树


      梯度提升树(GBT)是决策树的集合。 GBT迭代地训练决策树以便使损失函数最小化。 spark.ml实现支持GBT用于二进制分类和回归,可以使用连续和分类特征。

    导入包

    import org.apache.spark.sql.SparkSession
    import org.apache.spark.sql.Dataset
    import org.apache.spark.sql.Row
    import org.apache.spark.sql.DataFrame
    import org.apache.spark.sql.Column
    import org.apache.spark.sql.DataFrameReader
    import org.apache.spark.rdd.RDD
    import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
    import org.apache.spark.sql.Encoder
    import org.apache.spark.sql.DataFrameStatFunctions
    import org.apache.spark.sql.functions._
    
    import org.apache.spark.ml.linalg.Vectors
    import org.apache.spark.ml.feature.{ IndexToString, StringIndexer, VectorIndexer }
    import org.apache.spark.ml.feature.VectorAssembler
    import org.apache.spark.ml.Pipeline
    import org.apache.spark.ml.regression.{ GBTRegressionModel, GBTRegressor }
    import org.apache.spark.ml.evaluation.RegressionEvaluator
    import org.apache.spark.ml.tuning.{ ParamGridBuilder, CrossValidator }
    

    导入数据源

    val spark = SparkSession.builder().appName("Spark Gradient-boosted tree regression").config("spark.some.config.option", "some-value").getOrCreate()
    
    // For implicit conversions like converting RDDs to DataFrames
    import spark.implicits._
    
    val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List(  
          (0, "male", 37, 10, "no", 3, 18, 7, 4),  
          (0, "female", 27, 4, "no", 4, 14, 6, 4),  
          (0, "female", 32, 15, "yes", 1, 12, 1, 4),  
          (0, "male", 57, 15, "yes", 5, 18, 6, 5),  
          (0, "male", 22, 0.75, "no", 2, 17, 6, 3),  
          (0, "female", 32, 1.5, "no", 2, 17, 5, 5),  
          (0, "female", 22, 0.75, "no", 2, 12, 1, 3),  
          (0, "male", 57, 15, "yes", 2, 14, 4, 4),  
          (0, "female", 32, 15, "yes", 4, 16, 1, 2),  
          (0, "male", 22, 1.5, "no", 4, 14, 4, 5),  
          (0, "male", 37, 15, "yes", 2, 20, 7, 2),  
          (0, "male", 27, 4, "yes", 4, 18, 6, 4),  
          (0, "male", 47, 15, "yes", 5, 17, 6, 4),  
          (0, "female", 22, 1.5, "no", 2, 17, 5, 4),  
          (0, "female", 27, 4, "no", 4, 14, 5, 4),  
          (0, "female", 37, 15, "yes", 1, 17, 5, 5),  
          (0, "female", 37, 15, "yes", 2, 18, 4, 3),  
          (0, "female", 22, 0.75, "no", 3, 16, 5, 4),  
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "female", 27, 10, "yes", 2, 14, 1, 5),  
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "female", 27, 10, "yes", 4, 16, 5, 4),  
          (0, "female", 32, 10, "yes", 3, 14, 1, 5),  
          (0, "male", 37, 4, "yes", 2, 20, 6, 4),  
          (0, "female", 22, 1.5, "no", 2, 18, 5, 5),  
          (0, "female", 27, 7, "no", 4, 16, 1, 5),  
          (0, "male", 42, 15, "yes", 5, 20, 6, 4),  
          (0, "male", 27, 4, "yes", 3, 16, 5, 5),  
          (0, "female", 27, 4, "yes", 3, 17, 5, 4),  
          (0, "male", 42, 15, "yes", 4, 20, 6, 3),  
          (0, "female", 22, 1.5, "no", 3, 16, 5, 5),  
          (0, "male", 27, 0.417, "no", 4, 17, 6, 4),  
          (0, "female", 42, 15, "yes", 5, 14, 5, 4),  
          (0, "male", 32, 4, "yes", 1, 18, 6, 4),  
          (0, "female", 22, 1.5, "no", 4, 16, 5, 3),  
          (0, "female", 42, 15, "yes", 3, 12, 1, 4),  
          (0, "female", 22, 4, "no", 4, 17, 5, 5),  
          (0, "male", 22, 1.5, "yes", 1, 14, 3, 5),  
          (0, "female", 22, 0.75, "no", 3, 16, 1, 5),  
          (0, "male", 32, 10, "yes", 5, 20, 6, 5),  
          (0, "male", 52, 15, "yes", 5, 18, 6, 3),  
          (0, "female", 22, 0.417, "no", 5, 14, 1, 4),  
          (0, "female", 27, 4, "yes", 2, 18, 6, 1),  
          (0, "female", 32, 7, "yes", 5, 17, 5, 3),  
          (0, "male", 22, 4, "no", 3, 16, 5, 5),  
          (0, "female", 27, 7, "yes", 4, 18, 6, 5),  
          (0, "female", 42, 15, "yes", 2, 18, 5, 4),  
          (0, "male", 27, 1.5, "yes", 4, 16, 3, 5),  
          (0, "male", 42, 15, "yes", 2, 20, 6, 4),  
          (0, "female", 22, 0.75, "no", 5, 14, 3, 5),  
          (0, "male", 32, 7, "yes", 2, 20, 6, 4),  
          (0, "male", 27, 4, "yes", 5, 20, 6, 5),  
          (0, "male", 27, 10, "yes", 4, 20, 6, 4),  
          (0, "male", 22, 4, "no", 1, 18, 5, 5),  
          (0, "female", 37, 15, "yes", 4, 14, 3, 1),  
          (0, "male", 22, 1.5, "yes", 5, 16, 4, 4),  
          (0, "female", 37, 15, "yes", 4, 17, 1, 5),  
          (0, "female", 27, 0.75, "no", 4, 17, 5, 4),  
          (0, "male", 32, 10, "yes", 4, 20, 6, 4),  
          (0, "female", 47, 15, "yes", 5, 14, 7, 2),  
          (0, "male", 37, 10, "yes", 3, 20, 6, 4),  
          (0, "female", 22, 0.75, "no", 2, 16, 5, 5),  
          (0, "male", 27, 4, "no", 2, 18, 4, 5),  
          (0, "male", 32, 7, "no", 4, 20, 6, 4),  
          (0, "male", 42, 15, "yes", 2, 17, 3, 5),  
          (0, "male", 37, 10, "yes", 4, 20, 6, 4),  
          (0, "female", 47, 15, "yes", 3, 17, 6, 5),  
          (0, "female", 22, 1.5, "no", 5, 16, 5, 5),  
          (0, "female", 27, 1.5, "no", 2, 16, 6, 4),  
          (0, "female", 27, 4, "no", 3, 17, 5, 5),  
          (0, "female", 32, 10, "yes", 5, 14, 4, 5),  
          (0, "female", 22, 0.125, "no", 2, 12, 5, 5),  
          (0, "male", 47, 15, "yes", 4, 14, 4, 3),  
          (0, "male", 32, 15, "yes", 1, 14, 5, 5),  
          (0, "male", 27, 7, "yes", 4, 16, 5, 5),  
          (0, "female", 22, 1.5, "yes", 3, 16, 5, 5),  
          (0, "male", 27, 4, "yes", 3, 17, 6, 5),  
          (0, "female", 22, 1.5, "no", 3, 16, 5, 5),  
          (0, "male", 57, 15, "yes", 2, 14, 7, 2),  
          (0, "male", 17.5, 1.5, "yes", 3, 18, 6, 5),  
          (0, "male", 57, 15, "yes", 4, 20, 6, 5),  
          (0, "female", 22, 0.75, "no", 2, 16, 3, 4),  
          (0, "male", 42, 4, "no", 4, 17, 3, 3),  
          (0, "female", 22, 1.5, "yes", 4, 12, 1, 5),  
          (0, "female", 22, 0.417, "no", 1, 17, 6, 4),  
          (0, "female", 32, 15, "yes", 4, 17, 5, 5),  
          (0, "female", 27, 1.5, "no", 3, 18, 5, 2),  
          (0, "female", 22, 1.5, "yes", 3, 14, 1, 5),  
          (0, "female", 37, 15, "yes", 3, 14, 1, 4),  
          (0, "female", 32, 15, "yes", 4, 14, 3, 4),  
          (0, "male", 37, 10, "yes", 2, 14, 5, 3),  
          (0, "male", 37, 10, "yes", 4, 16, 5, 4),  
          (0, "male", 57, 15, "yes", 5, 20, 5, 3),  
          (0, "male", 27, 0.417, "no", 1, 16, 3, 4),  
          (0, "female", 42, 15, "yes", 5, 14, 1, 5),  
          (0, "male", 57, 15, "yes", 3, 16, 6, 1),  
          (0, "male", 37, 10, "yes", 1, 16, 6, 4),  
          (0, "male", 37, 15, "yes", 3, 17, 5, 5),  
          (0, "male", 37, 15, "yes", 4, 20, 6, 5),  
          (0, "female", 27, 10, "yes", 5, 14, 1, 5),  
          (0, "male", 37, 10, "yes", 2, 18, 6, 4),  
          (0, "female", 22, 0.125, "no", 4, 12, 4, 5),  
          (0, "male", 57, 15, "yes", 5, 20, 6, 5),  
          (0, "female", 37, 15, "yes", 4, 18, 6, 4),  
          (0, "male", 22, 4, "yes", 4, 14, 6, 4),  
          (0, "male", 27, 7, "yes", 4, 18, 5, 4),  
          (0, "male", 57, 15, "yes", 4, 20, 5, 4),  
          (0, "male", 32, 15, "yes", 3, 14, 6, 3),  
          (0, "female", 22, 1.5, "no", 2, 14, 5, 4),  
          (0, "female", 32, 7, "yes", 4, 17, 1, 5),  
          (0, "female", 37, 15, "yes", 4, 17, 6, 5),  
          (0, "female", 32, 1.5, "no", 5, 18, 5, 5),  
          (0, "male", 42, 10, "yes", 5, 20, 7, 4),  
          (0, "female", 27, 7, "no", 3, 16, 5, 4),  
          (0, "male", 37, 15, "no", 4, 20, 6, 5),  
          (0, "male", 37, 15, "yes", 4, 14, 3, 2),  
          (0, "male", 32, 10, "no", 5, 18, 6, 4),  
          (0, "female", 22, 0.75, "no", 4, 16, 1, 5),  
          (0, "female", 27, 7, "yes", 4, 12, 2, 4),  
          (0, "female", 27, 7, "yes", 2, 16, 2, 5),  
          (0, "female", 42, 15, "yes", 5, 18, 5, 4),  
          (0, "male", 42, 15, "yes", 4, 17, 5, 3),  
          (0, "female", 27, 7, "yes", 2, 16, 1, 2),  
          (0, "female", 22, 1.5, "no", 3, 16, 5, 5),  
          (0, "male", 37, 15, "yes", 5, 20, 6, 5),  
          (0, "female", 22, 0.125, "no", 2, 14, 4, 5),  
          (0, "male", 27, 1.5, "no", 4, 16, 5, 5),  
          (0, "male", 32, 1.5, "no", 2, 18, 6, 5),  
          (0, "male", 27, 1.5, "no", 2, 17, 6, 5),  
          (0, "female", 27, 10, "yes", 4, 16, 1, 3),  
          (0, "male", 42, 15, "yes", 4, 18, 6, 5),  
          (0, "female", 27, 1.5, "no", 2, 16, 6, 5),  
          (0, "male", 27, 4, "no", 2, 18, 6, 3),  
          (0, "female", 32, 10, "yes", 3, 14, 5, 3),  
          (0, "female", 32, 15, "yes", 3, 18, 5, 4),  
          (0, "female", 22, 0.75, "no", 2, 18, 6, 5),  
          (0, "female", 37, 15, "yes", 2, 16, 1, 4),  
          (0, "male", 27, 4, "yes", 4, 20, 5, 5),  
          (0, "male", 27, 4, "no", 1, 20, 5, 4),  
          (0, "female", 27, 10, "yes", 2, 12, 1, 4),  
          (0, "female", 32, 15, "yes", 5, 18, 6, 4),  
          (0, "male", 27, 7, "yes", 5, 12, 5, 3),  
          (0, "male", 52, 15, "yes", 2, 18, 5, 4),  
          (0, "male", 27, 4, "no", 3, 20, 6, 3),  
          (0, "male", 37, 4, "yes", 1, 18, 5, 4),  
          (0, "male", 27, 4, "yes", 4, 14, 5, 4),  
          (0, "female", 52, 15, "yes", 5, 12, 1, 3),  
          (0, "female", 57, 15, "yes", 4, 16, 6, 4),  
          (0, "male", 27, 7, "yes", 1, 16, 5, 4),  
          (0, "male", 37, 7, "yes", 4, 20, 6, 3),  
          (0, "male", 22, 0.75, "no", 2, 14, 4, 3),  
          (0, "male", 32, 4, "yes", 2, 18, 5, 3),  
          (0, "male", 37, 15, "yes", 4, 20, 6, 3),  
          (0, "male", 22, 0.75, "yes", 2, 14, 4, 3),  
          (0, "male", 42, 15, "yes", 4, 20, 6, 3),  
          (0, "female", 52, 15, "yes", 5, 17, 1, 1),  
          (0, "female", 37, 15, "yes", 4, 14, 1, 2),  
          (0, "male", 27, 7, "yes", 4, 14, 5, 3),  
          (0, "male", 32, 4, "yes", 2, 16, 5, 5),  
          (0, "female", 27, 4, "yes", 2, 18, 6, 5),  
          (0, "female", 27, 4, "yes", 2, 18, 5, 5),  
          (0, "male", 37, 15, "yes", 5, 18, 6, 5),  
          (0, "female", 47, 15, "yes", 5, 12, 5, 4),  
          (0, "female", 32, 10, "yes", 3, 17, 1, 4),  
          (0, "female", 27, 1.5, "yes", 4, 17, 1, 2),  
          (0, "female", 57, 15, "yes", 2, 18, 5, 2),  
          (0, "female", 22, 1.5, "no", 4, 14, 5, 4),  
          (0, "male", 42, 15, "yes", 3, 14, 3, 4),  
          (0, "male", 57, 15, "yes", 4, 9, 2, 2),  
          (0, "male", 57, 15, "yes", 4, 20, 6, 5),  
          (0, "female", 22, 0.125, "no", 4, 14, 4, 5),  
          (0, "female", 32, 10, "yes", 4, 14, 1, 5),  
          (0, "female", 42, 15, "yes", 3, 18, 5, 4),  
          (0, "female", 27, 1.5, "no", 2, 18, 6, 5),  
          (0, "male", 32, 0.125, "yes", 2, 18, 5, 2),  
          (0, "female", 27, 4, "no", 3, 16, 5, 4),  
          (0, "female", 27, 10, "yes", 2, 16, 1, 4),  
          (0, "female", 32, 7, "yes", 4, 16, 1, 3),  
          (0, "female", 37, 15, "yes", 4, 14, 5, 4),  
          (0, "female", 42, 15, "yes", 5, 17, 6, 2),  
          (0, "male", 32, 1.5, "yes", 4, 14, 6, 5),  
          (0, "female", 32, 4, "yes", 3, 17, 5, 3),  
          (0, "female", 37, 7, "no", 4, 18, 5, 5),  
          (0, "female", 22, 0.417, "yes", 3, 14, 3, 5),  
          (0, "female", 27, 7, "yes", 4, 14, 1, 5),  
          (0, "male", 27, 0.75, "no", 3, 16, 5, 5),  
          (0, "male", 27, 4, "yes", 2, 20, 5, 5),  
          (0, "male", 32, 10, "yes", 4, 16, 4, 5),  
          (0, "male", 32, 15, "yes", 1, 14, 5, 5),  
          (0, "male", 22, 0.75, "no", 3, 17, 4, 5),  
          (0, "female", 27, 7, "yes", 4, 17, 1, 4),  
          (0, "male", 27, 0.417, "yes", 4, 20, 5, 4),  
          (0, "male", 37, 15, "yes", 4, 20, 5, 4),  
          (0, "female", 37, 15, "yes", 2, 14, 1, 3),  
          (0, "male", 22, 4, "yes", 1, 18, 5, 4),  
          (0, "male", 37, 15, "yes", 4, 17, 5, 3),  
          (0, "female", 22, 1.5, "no", 2, 14, 4, 5),  
          (0, "male", 52, 15, "yes", 4, 14, 6, 2),  
          (0, "female", 22, 1.5, "no", 4, 17, 5, 5),  
          (0, "male", 32, 4, "yes", 5, 14, 3, 5),  
          (0, "male", 32, 4, "yes", 2, 14, 3, 5),  
          (0, "female", 22, 1.5, "no", 3, 16, 6, 5),  
          (0, "male", 27, 0.75, "no", 2, 18, 3, 3),  
          (0, "female", 22, 7, "yes", 2, 14, 5, 2),  
          (0, "female", 27, 0.75, "no", 2, 17, 5, 3),  
          (0, "female", 37, 15, "yes", 4, 12, 1, 2),  
          (0, "female", 22, 1.5, "no", 1, 14, 1, 5),  
          (0, "female", 37, 10, "no", 2, 12, 4, 4),  
          (0, "female", 37, 15, "yes", 4, 18, 5, 3),  
          (0, "female", 42, 15, "yes", 3, 12, 3, 3),  
          (0, "male", 22, 4, "no", 2, 18, 5, 5),  
          (0, "male", 52, 7, "yes", 2, 20, 6, 2),  
          (0, "male", 27, 0.75, "no", 2, 17, 5, 5),  
          (0, "female", 27, 4, "no", 2, 17, 4, 5),  
          (0, "male", 42, 1.5, "no", 5, 20, 6, 5),  
          (0, "male", 22, 1.5, "no", 4, 17, 6, 5),  
          (0, "male", 22, 4, "no", 4, 17, 5, 3),  
          (0, "female", 22, 4, "yes", 1, 14, 5, 4),  
          (0, "male", 37, 15, "yes", 5, 20, 4, 5),  
          (0, "female", 37, 10, "yes", 3, 16, 6, 3),  
          (0, "male", 42, 15, "yes", 4, 17, 6, 5),  
          (0, "female", 47, 15, "yes", 4, 17, 5, 5),  
          (0, "male", 22, 1.5, "no", 4, 16, 5, 4),  
          (0, "female", 32, 10, "yes", 3, 12, 1, 4),  
          (0, "female", 22, 7, "yes", 1, 14, 3, 5),  
          (0, "female", 32, 10, "yes", 4, 17, 5, 4),  
          (0, "male", 27, 1.5, "yes", 2, 16, 2, 4),  
          (0, "male", 37, 15, "yes", 4, 14, 5, 5),  
          (0, "male", 42, 4, "yes", 3, 14, 4, 5),  
          (0, "female", 37, 15, "yes", 5, 14, 5, 4),  
          (0, "female", 32, 7, "yes", 4, 17, 5, 5),  
          (0, "female", 42, 15, "yes", 4, 18, 6, 5),  
          (0, "male", 27, 4, "no", 4, 18, 6, 4),  
          (0, "male", 22, 0.75, "no", 4, 18, 6, 5),  
          (0, "male", 27, 4, "yes", 4, 14, 5, 3),  
          (0, "female", 22, 0.75, "no", 5, 18, 1, 5),  
          (0, "female", 52, 15, "yes", 5, 9, 5, 5),  
          (0, "male", 32, 10, "yes", 3, 14, 5, 5),  
          (0, "female", 37, 15, "yes", 4, 16, 4, 4),  
          (0, "male", 32, 7, "yes", 2, 20, 5, 4),  
          (0, "female", 42, 15, "yes", 3, 18, 1, 4),  
          (0, "male", 32, 15, "yes", 1, 16, 5, 5),  
          (0, "male", 27, 4, "yes", 3, 18, 5, 5),  
          (0, "female", 32, 15, "yes", 4, 12, 3, 4),  
          (0, "male", 22, 0.75, "yes", 3, 14, 2, 4),  
          (0, "female", 22, 1.5, "no", 3, 16, 5, 3),  
          (0, "female", 42, 15, "yes", 4, 14, 3, 5),  
          (0, "female", 52, 15, "yes", 3, 16, 5, 4),  
          (0, "male", 37, 15, "yes", 5, 20, 6, 4),  
          (0, "female", 47, 15, "yes", 4, 12, 2, 3),  
          (0, "male", 57, 15, "yes", 2, 20, 6, 4),  
          (0, "male", 32, 7, "yes", 4, 17, 5, 5),  
          (0, "female", 27, 7, "yes", 4, 17, 1, 4),  
          (0, "male", 22, 1.5, "no", 1, 18, 6, 5),  
          (0, "female", 22, 4, "yes", 3, 9, 1, 4),  
          (0, "female", 22, 1.5, "no", 2, 14, 1, 5),  
          (0, "male", 42, 15, "yes", 2, 20, 6, 4),  
          (0, "male", 57, 15, "yes", 4, 9, 2, 4),  
          (0, "female", 27, 7, "yes", 2, 18, 1, 5),  
          (0, "female", 22, 4, "yes", 3, 14, 1, 5),  
          (0, "male", 37, 15, "yes", 4, 14, 5, 3),  
          (0, "male", 32, 7, "yes", 1, 18, 6, 4),  
          (0, "female", 22, 1.5, "no", 2, 14, 5, 5),  
          (0, "female", 22, 1.5, "yes", 3, 12, 1, 3),  
          (0, "male", 52, 15, "yes", 2, 14, 5, 5),  
          (0, "female", 37, 15, "yes", 2, 14, 1, 1),  
          (0, "female", 32, 10, "yes", 2, 14, 5, 5),  
          (0, "male", 42, 15, "yes", 4, 20, 4, 5),  
          (0, "female", 27, 4, "yes", 3, 18, 4, 5),  
          (0, "male", 37, 15, "yes", 4, 20, 6, 5),  
          (0, "male", 27, 1.5, "no", 3, 18, 5, 5),  
          (0, "female", 22, 0.125, "no", 2, 16, 6, 3),  
          (0, "male", 32, 10, "yes", 2, 20, 6, 3),  
          (0, "female", 27, 4, "no", 4, 18, 5, 4),  
          (0, "female", 27, 7, "yes", 2, 12, 5, 1),  
          (0, "male", 32, 4, "yes", 5, 18, 6, 3),  
          (0, "female", 37, 15, "yes", 2, 17, 5, 5),  
          (0, "male", 47, 15, "no", 4, 20, 6, 4),  
          (0, "male", 27, 1.5, "no", 1, 18, 5, 5),  
          (0, "male", 37, 15, "yes", 4, 20, 6, 4),  
          (0, "female", 32, 15, "yes", 4, 18, 1, 4),  
          (0, "female", 32, 7, "yes", 4, 17, 5, 4),  
          (0, "female", 42, 15, "yes", 3, 14, 1, 3),  
          (0, "female", 27, 7, "yes", 3, 16, 1, 4),  
          (0, "male", 27, 1.5, "no", 3, 16, 4, 2),  
          (0, "male", 22, 1.5, "no", 3, 16, 3, 5),  
          (0, "male", 27, 4, "yes", 3, 16, 4, 2),  
          (0, "female", 27, 7, "yes", 3, 12, 1, 2),  
          (0, "female", 37, 15, "yes", 2, 18, 5, 4),  
          (0, "female", 37, 7, "yes", 3, 14, 4, 4),  
          (0, "male", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "male", 37, 15, "yes", 5, 20, 5, 4),  
          (0, "female", 22, 1.5, "no", 4, 16, 5, 3),  
          (0, "female", 32, 10, "yes", 4, 16, 1, 5),  
          (0, "male", 27, 4, "no", 2, 17, 5, 3),  
          (0, "female", 22, 0.417, "no", 4, 14, 5, 5),  
          (0, "female", 27, 4, "no", 2, 18, 5, 5),  
          (0, "male", 37, 15, "yes", 4, 18, 5, 3),  
          (0, "male", 37, 10, "yes", 5, 20, 7, 4),  
          (0, "female", 27, 7, "yes", 2, 14, 4, 2),  
          (0, "male", 32, 4, "yes", 2, 16, 5, 5),  
          (0, "male", 32, 4, "yes", 2, 16, 6, 4),  
          (0, "male", 22, 1.5, "no", 3, 18, 4, 5),  
          (0, "female", 22, 4, "yes", 4, 14, 3, 4),  
          (0, "female", 17.5, 0.75, "no", 2, 18, 5, 4),  
          (0, "male", 32, 10, "yes", 4, 20, 4, 5),  
          (0, "female", 32, 0.75, "no", 5, 14, 3, 3),  
          (0, "male", 37, 15, "yes", 4, 17, 5, 3),  
          (0, "male", 32, 4, "no", 3, 14, 4, 5),  
          (0, "female", 27, 1.5, "no", 2, 17, 3, 2),  
          (0, "female", 22, 7, "yes", 4, 14, 1, 5),  
          (0, "male", 47, 15, "yes", 5, 14, 6, 5),  
          (0, "male", 27, 4, "yes", 1, 16, 4, 4),  
          (0, "female", 37, 15, "yes", 5, 14, 1, 3),  
          (0, "male", 42, 4, "yes", 4, 18, 5, 5),  
          (0, "female", 32, 4, "yes", 2, 14, 1, 5),  
          (0, "male", 52, 15, "yes", 2, 14, 7, 4),  
          (0, "female", 22, 1.5, "no", 2, 16, 1, 4),  
          (0, "male", 52, 15, "yes", 4, 12, 2, 4),  
          (0, "female", 22, 0.417, "no", 3, 17, 1, 5),  
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "male", 27, 4, "yes", 4, 20, 6, 4),  
          (0, "female", 32, 15, "yes", 4, 14, 1, 5),  
          (0, "female", 27, 1.5, "no", 2, 16, 3, 5),  
          (0, "male", 32, 4, "no", 1, 20, 6, 5),  
          (0, "male", 37, 15, "yes", 3, 20, 6, 4),  
          (0, "female", 32, 10, "no", 2, 16, 6, 5),  
          (0, "female", 32, 10, "yes", 5, 14, 5, 5),  
          (0, "male", 37, 1.5, "yes", 4, 18, 5, 3),  
          (0, "male", 32, 1.5, "no", 2, 18, 4, 4),  
          (0, "female", 32, 10, "yes", 4, 14, 1, 4),  
          (0, "female", 47, 15, "yes", 4, 18, 5, 4),  
          (0, "female", 27, 10, "yes", 5, 12, 1, 5),  
          (0, "male", 27, 4, "yes", 3, 16, 4, 5),  
          (0, "female", 37, 15, "yes", 4, 12, 4, 2),  
          (0, "female", 27, 0.75, "no", 4, 16, 5, 5),  
          (0, "female", 37, 15, "yes", 4, 16, 1, 5),  
          (0, "female", 32, 15, "yes", 3, 16, 1, 5),  
          (0, "female", 27, 10, "yes", 2, 16, 1, 5),  
          (0, "male", 27, 7, "no", 2, 20, 6, 5),  
          (0, "female", 37, 15, "yes", 2, 14, 1, 3),  
          (0, "male", 27, 1.5, "yes", 2, 17, 4, 4),  
          (0, "female", 22, 0.75, "yes", 2, 14, 1, 5),  
          (0, "male", 22, 4, "yes", 4, 14, 2, 4),  
          (0, "male", 42, 0.125, "no", 4, 17, 6, 4),  
          (0, "male", 27, 1.5, "yes", 4, 18, 6, 5),  
          (0, "male", 27, 7, "yes", 3, 16, 6, 3),  
          (0, "female", 52, 15, "yes", 4, 14, 1, 3),  
          (0, "male", 27, 1.5, "no", 5, 20, 5, 2),  
          (0, "female", 27, 1.5, "no", 2, 16, 5, 5),  
          (0, "female", 27, 1.5, "no", 3, 17, 5, 5),  
          (0, "male", 22, 0.125, "no", 5, 16, 4, 4),  
          (0, "female", 27, 4, "yes", 4, 16, 1, 5),  
          (0, "female", 27, 4, "yes", 4, 12, 1, 5),  
          (0, "female", 47, 15, "yes", 2, 14, 5, 5),  
          (0, "female", 32, 15, "yes", 3, 14, 5, 3),  
          (0, "male", 42, 7, "yes", 2, 16, 5, 5),  
          (0, "male", 22, 0.75, "no", 4, 16, 6, 4),  
          (0, "male", 27, 0.125, "no", 3, 20, 6, 5),  
          (0, "male", 32, 10, "yes", 3, 20, 6, 5),  
          (0, "female", 22, 0.417, "no", 5, 14, 4, 5),  
          (0, "female", 47, 15, "yes", 5, 14, 1, 4),  
          (0, "female", 32, 10, "yes", 3, 14, 1, 5),  
          (0, "male", 57, 15, "yes", 4, 17, 5, 5),  
          (0, "male", 27, 4, "yes", 3, 20, 6, 5),  
          (0, "female", 32, 7, "yes", 4, 17, 1, 5),  
          (0, "female", 37, 10, "yes", 4, 16, 1, 5),  
          (0, "female", 32, 10, "yes", 1, 18, 1, 4),  
          (0, "female", 22, 4, "no", 3, 14, 1, 4),  
          (0, "female", 27, 7, "yes", 4, 14, 3, 2),  
          (0, "male", 57, 15, "yes", 5, 18, 5, 2),  
          (0, "male", 32, 7, "yes", 2, 18, 5, 5),  
          (0, "female", 27, 1.5, "no", 4, 17, 1, 3),  
          (0, "male", 22, 1.5, "no", 4, 14, 5, 5),  
          (0, "female", 22, 1.5, "yes", 4, 14, 5, 4),  
          (0, "female", 32, 7, "yes", 3, 16, 1, 5),  
          (0, "female", 47, 15, "yes", 3, 16, 5, 4),  
          (0, "female", 22, 0.75, "no", 3, 16, 1, 5),  
          (0, "female", 22, 1.5, "yes", 2, 14, 5, 5),  
          (0, "female", 27, 4, "yes", 1, 16, 5, 5),  
          (0, "male", 52, 15, "yes", 4, 16, 5, 5),  
          (0, "male", 32, 10, "yes", 4, 20, 6, 5),  
          (0, "male", 47, 15, "yes", 4, 16, 6, 4),  
          (0, "female", 27, 7, "yes", 2, 14, 1, 2),  
          (0, "female", 22, 1.5, "no", 4, 14, 4, 5),  
          (0, "female", 32, 10, "yes", 2, 16, 5, 4),  
          (0, "female", 22, 0.75, "no", 2, 16, 5, 4),  
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "female", 42, 15, "yes", 3, 18, 6, 4),  
          (0, "female", 27, 7, "yes", 5, 14, 4, 5),  
          (0, "male", 42, 15, "yes", 4, 16, 4, 4),  
          (0, "female", 57, 15, "yes", 3, 18, 5, 2),  
          (0, "male", 42, 15, "yes", 3, 18, 6, 2),  
          (0, "female", 32, 7, "yes", 2, 14, 1, 2),  
          (0, "male", 22, 4, "no", 5, 12, 4, 5),  
          (0, "female", 22, 1.5, "no", 1, 16, 6, 5),  
          (0, "female", 22, 0.75, "no", 1, 14, 4, 5),  
          (0, "female", 32, 15, "yes", 4, 12, 1, 5),  
          (0, "male", 22, 1.5, "no", 2, 18, 5, 3),  
          (0, "male", 27, 4, "yes", 5, 17, 2, 5),  
          (0, "female", 27, 4, "yes", 4, 12, 1, 5),  
          (0, "male", 42, 15, "yes", 5, 18, 5, 4),  
          (0, "male", 32, 1.5, "no", 2, 20, 7, 3),  
          (0, "male", 57, 15, "no", 4, 9, 3, 1),  
          (0, "male", 37, 7, "no", 4, 18, 5, 5),  
          (0, "male", 52, 15, "yes", 2, 17, 5, 4),  
          (0, "male", 47, 15, "yes", 4, 17, 6, 5),  
          (0, "female", 27, 7, "no", 2, 17, 5, 4),  
          (0, "female", 27, 7, "yes", 4, 14, 5, 5),  
          (0, "female", 22, 4, "no", 2, 14, 3, 3),  
          (0, "male", 37, 7, "yes", 2, 20, 6, 5),  
          (0, "male", 27, 7, "no", 4, 12, 4, 3),  
          (0, "male", 42, 10, "yes", 4, 18, 6, 4),  
          (0, "female", 22, 1.5, "no", 3, 14, 1, 5),  
          (0, "female", 22, 4, "yes", 2, 14, 1, 3),  
          (0, "female", 57, 15, "no", 4, 20, 6, 5),  
          (0, "male", 37, 15, "yes", 4, 14, 4, 3),  
          (0, "female", 27, 7, "yes", 3, 18, 5, 5),  
          (0, "female", 17.5, 10, "no", 4, 14, 4, 5),  
          (0, "male", 22, 4, "yes", 4, 16, 5, 5),  
          (0, "female", 27, 4, "yes", 2, 16, 1, 4),  
          (0, "female", 37, 15, "yes", 2, 14, 5, 1),  
          (0, "female", 22, 1.5, "no", 5, 14, 1, 4),  
          (0, "male", 27, 7, "yes", 2, 20, 5, 4),  
          (0, "male", 27, 4, "yes", 4, 14, 5, 5),  
          (0, "male", 22, 0.125, "no", 1, 16, 3, 5),  
          (0, "female", 27, 7, "yes", 4, 14, 1, 4),  
          (0, "female", 32, 15, "yes", 5, 16, 5, 3),  
          (0, "male", 32, 10, "yes", 4, 18, 5, 4),  
          (0, "female", 32, 15, "yes", 2, 14, 3, 4),  
          (0, "female", 22, 1.5, "no", 3, 17, 5, 5),  
          (0, "male", 27, 4, "yes", 4, 17, 4, 4),  
          (0, "female", 52, 15, "yes", 5, 14, 1, 5),  
          (0, "female", 27, 7, "yes", 2, 12, 1, 2),  
          (0, "female", 27, 7, "yes", 3, 12, 1, 4),  
          (0, "female", 42, 15, "yes", 2, 14, 1, 4),  
          (0, "female", 42, 15, "yes", 4, 14, 5, 4),  
          (0, "male", 27, 7, "yes", 4, 14, 3, 3),  
          (0, "male", 27, 7, "yes", 2, 20, 6, 2),  
          (0, "female", 42, 15, "yes", 3, 12, 3, 3),  
          (0, "male", 27, 4, "yes", 3, 16, 3, 5),  
          (0, "female", 27, 7, "yes", 3, 14, 1, 4),  
          (0, "female", 22, 1.5, "no", 2, 14, 4, 5),  
          (0, "female", 27, 4, "yes", 4, 14, 1, 4),  
          (0, "female", 22, 4, "no", 4, 14, 5, 5),  
          (0, "female", 22, 1.5, "no", 2, 16, 4, 5),  
          (0, "male", 47, 15, "no", 4, 14, 5, 4),  
          (0, "male", 37, 10, "yes", 2, 18, 6, 2),  
          (0, "male", 37, 15, "yes", 3, 17, 5, 4),  
          (0, "female", 27, 4, "yes", 2, 16, 1, 4),  
          (3, "male", 27, 1.5, "no", 3, 18, 4, 4),  
          (3, "female", 27, 4, "yes", 3, 17, 1, 5),  
          (7, "male", 37, 15, "yes", 5, 18, 6, 2),  
          (12, "female", 32, 10, "yes", 3, 17, 5, 2),  
          (1, "male", 22, 0.125, "no", 4, 16, 5, 5),  
          (1, "female", 22, 1.5, "yes", 2, 14, 1, 5),  
          (12, "male", 37, 15, "yes", 4, 14, 5, 2),  
          (7, "female", 22, 1.5, "no", 2, 14, 3, 4),  
          (2, "male", 37, 15, "yes", 2, 18, 6, 4),  
          (3, "female", 32, 15, "yes", 4, 12, 3, 2),  
          (1, "female", 37, 15, "yes", 4, 14, 4, 2),  
          (7, "female", 42, 15, "yes", 3, 17, 1, 4),  
          (12, "female", 42, 15, "yes", 5, 9, 4, 1),  
          (12, "male", 37, 10, "yes", 2, 20, 6, 2),  
          (12, "female", 32, 15, "yes", 3, 14, 1, 2),  
          (3, "male", 27, 4, "no", 1, 18, 6, 5),  
          (7, "male", 37, 10, "yes", 2, 18, 7, 3),  
          (7, "female", 27, 4, "no", 3, 17, 5, 5),  
          (1, "male", 42, 15, "yes", 4, 16, 5, 5),  
          (1, "female", 47, 15, "yes", 5, 14, 4, 5),  
          (7, "female", 27, 4, "yes", 3, 18, 5, 4),  
          (1, "female", 27, 7, "yes", 5, 14, 1, 4),  
          (12, "male", 27, 1.5, "yes", 3, 17, 5, 4),  
          (12, "female", 27, 7, "yes", 4, 14, 6, 2),  
          (3, "female", 42, 15, "yes", 4, 16, 5, 4),  
          (7, "female", 27, 10, "yes", 4, 12, 7, 3),  
          (1, "male", 27, 1.5, "no", 2, 18, 5, 2),  
          (1, "male", 32, 4, "no", 4, 20, 6, 4),  
          (1, "female", 27, 7, "yes", 3, 14, 1, 3),  
          (3, "female", 32, 10, "yes", 4, 14, 1, 4),  
          (3, "male", 27, 4, "yes", 2, 18, 7, 2),  
          (1, "female", 17.5, 0.75, "no", 5, 14, 4, 5),  
          (1, "female", 32, 10, "yes", 4, 18, 1, 5),  
          (7, "female", 32, 7, "yes", 2, 17, 6, 4),  
          (7, "male", 37, 15, "yes", 2, 20, 6, 4),  
          (7, "female", 37, 10, "no", 1, 20, 5, 3),  
          (12, "female", 32, 10, "yes", 2, 16, 5, 5),  
          (7, "male", 52, 15, "yes", 2, 20, 6, 4),  
          (7, "female", 42, 15, "yes", 1, 12, 1, 3),  
          (1, "male", 52, 15, "yes", 2, 20, 6, 3),  
          (2, "male", 37, 15, "yes", 3, 18, 6, 5),  
          (12, "female", 22, 4, "no", 3, 12, 3, 4),  
          (12, "male", 27, 7, "yes", 1, 18, 6, 2),  
          (1, "male", 27, 4, "yes", 3, 18, 5, 5),  
          (12, "male", 47, 15, "yes", 4, 17, 6, 5),  
          (12, "female", 42, 15, "yes", 4, 12, 1, 1),  
          (7, "male", 27, 4, "no", 3, 14, 3, 4),  
          (7, "female", 32, 7, "yes", 4, 18, 4, 5),  
          (1, "male", 32, 0.417, "yes", 3, 12, 3, 4),  
          (3, "male", 47, 15, "yes", 5, 16, 5, 4),  
          (12, "male", 37, 15, "yes", 2, 20, 5, 4),  
          (7, "male", 22, 4, "yes", 2, 17, 6, 4),  
          (1, "male", 27, 4, "no", 2, 14, 4, 5),  
          (7, "female", 52, 15, "yes", 5, 16, 1, 3),  
          (1, "male", 27, 4, "no", 3, 14, 3, 3),  
          (1, "female", 27, 10, "yes", 4, 16, 1, 4),  
          (1, "male", 32, 7, "yes", 3, 14, 7, 4),  
          (7, "male", 32, 7, "yes", 2, 18, 4, 1),  
          (3, "male", 22, 1.5, "no", 1, 14, 3, 2),  
          (7, "male", 22, 4, "yes", 3, 18, 6, 4),  
          (7, "male", 42, 15, "yes", 4, 20, 6, 4),  
          (2, "female", 57, 15, "yes", 1, 18, 5, 4),  
          (7, "female", 32, 4, "yes", 3, 18, 5, 2),  
          (1, "male", 27, 4, "yes", 1, 16, 4, 4),  
          (7, "male", 32, 7, "yes", 4, 16, 1, 4),  
          (2, "male", 57, 15, "yes", 1, 17, 4, 4),  
          (7, "female", 42, 15, "yes", 4, 14, 5, 2),  
          (7, "male", 37, 10, "yes", 1, 18, 5, 3),  
          (3, "male", 42, 15, "yes", 3, 17, 6, 1),  
          (1, "female", 52, 15, "yes", 3, 14, 4, 4),  
          (2, "female", 27, 7, "yes", 3, 17, 5, 3),  
          (12, "male", 32, 7, "yes", 2, 12, 4, 2),  
          (1, "male", 22, 4, "no", 4, 14, 2, 5),  
          (3, "male", 27, 7, "yes", 3, 18, 6, 4),  
          (12, "female", 37, 15, "yes", 1, 18, 5, 5),  
          (7, "female", 32, 15, "yes", 3, 17, 1, 3),  
          (7, "female", 27, 7, "no", 2, 17, 5, 5),  
          (1, "female", 32, 7, "yes", 3, 17, 5, 3),  
          (1, "male", 32, 1.5, "yes", 2, 14, 2, 4),  
          (12, "female", 42, 15, "yes", 4, 14, 1, 2),  
          (7, "male", 32, 10, "yes", 3, 14, 5, 4),  
          (7, "male", 37, 4, "yes", 1, 20, 6, 3),  
          (1, "female", 27, 4, "yes", 2, 16, 5, 3),  
          (12, "female", 42, 15, "yes", 3, 14, 4, 3),  
          (1, "male", 27, 10, "yes", 5, 20, 6, 5),  
          (12, "male", 37, 10, "yes", 2, 20, 6, 2),  
          (12, "female", 27, 7, "yes", 1, 14, 3, 3),  
          (3, "female", 27, 7, "yes", 4, 12, 1, 2),  
          (3, "male", 32, 10, "yes", 2, 14, 4, 4),  
          (12, "female", 17.5, 0.75, "yes", 2, 12, 1, 3),  
          (12, "female", 32, 15, "yes", 3, 18, 5, 4),  
          (2, "female", 22, 7, "no", 4, 14, 4, 3),  
          (1, "male", 32, 7, "yes", 4, 20, 6, 5),  
          (7, "male", 27, 4, "yes", 2, 18, 6, 2),  
          (1, "female", 22, 1.5, "yes", 5, 14, 5, 3),  
          (12, "female", 32, 15, "no", 3, 17, 5, 1),  
          (12, "female", 42, 15, "yes", 2, 12, 1, 2),  
          (7, "male", 42, 15, "yes", 3, 20, 5, 4),  
          (12, "male", 32, 10, "no", 2, 18, 4, 2),  
          (12, "female", 32, 15, "yes", 3, 9, 1, 1),  
          (7, "male", 57, 15, "yes", 5, 20, 4, 5),  
          (12, "male", 47, 15, "yes", 4, 20, 6, 4),  
          (2, "female", 42, 15, "yes", 2, 17, 6, 3),  
          (12, "male", 37, 15, "yes", 3, 17, 6, 3),  
          (12, "male", 37, 15, "yes", 5, 17, 5, 2),  
          (7, "male", 27, 10, "yes", 2, 20, 6, 4),  
          (2, "male", 37, 15, "yes", 2, 16, 5, 4),  
          (12, "female", 32, 15, "yes", 1, 14, 5, 2),  
          (7, "male", 32, 10, "yes", 3, 17, 6, 3),  
          (2, "male", 37, 15, "yes", 4, 18, 5, 1),  
          (7, "female", 27, 1.5, "no", 2, 17, 5, 5),  
          (3, "female", 47, 15, "yes", 2, 17, 5, 2),  
          (12, "male", 37, 15, "yes", 2, 17, 5, 4),  
          (12, "female", 27, 4, "no", 2, 14, 5, 5),  
          (2, "female", 27, 10, "yes", 4, 14, 1, 5),  
          (1, "female", 22, 4, "yes", 3, 16, 1, 3),  
          (12, "male", 52, 7, "no", 4, 16, 5, 5),  
          (2, "female", 27, 4, "yes", 1, 16, 3, 5),  
          (7, "female", 37, 15, "yes", 2, 17, 6, 4),  
          (2, "female", 27, 4, "no", 1, 17, 3, 1),  
          (12, "female", 17.5, 0.75, "yes", 2, 12, 3, 5),  
          (7, "female", 32, 15, "yes", 5, 18, 5, 4),  
          (7, "female", 22, 4, "no", 1, 16, 3, 5),  
          (2, "male", 32, 4, "yes", 4, 18, 6, 4),  
          (1, "female", 22, 1.5, "yes", 3, 18, 5, 2),  
          (3, "female", 42, 15, "yes", 2, 17, 5, 4),  
          (1, "male", 32, 7, "yes", 4, 16, 4, 4),  
          (12, "male", 37, 15, "no", 3, 14, 6, 2),  
          (1, "male", 42, 15, "yes", 3, 16, 6, 3),  
          (1, "male", 27, 4, "yes", 1, 18, 5, 4),  
          (2, "male", 37, 15, "yes", 4, 20, 7, 3),  
          (7, "male", 37, 15, "yes", 3, 20, 6, 4),  
          (3, "male", 22, 1.5, "no", 2, 12, 3, 3),  
          (3, "male", 32, 4, "yes", 3, 20, 6, 2),  
          (2, "male", 32, 15, "yes", 5, 20, 6, 5),  
          (12, "female", 52, 15, "yes", 1, 18, 5, 5),  
          (12, "male", 47, 15, "no", 1, 18, 6, 5),  
          (3, "female", 32, 15, "yes", 4, 16, 4, 4),  
          (7, "female", 32, 15, "yes", 3, 14, 3, 2),  
          (7, "female", 27, 7, "yes", 4, 16, 1, 2),  
          (12, "male", 42, 15, "yes", 3, 18, 6, 2),  
          (7, "female", 42, 15, "yes", 2, 14, 3, 2),  
          (12, "male", 27, 7, "yes", 2, 17, 5, 4),  
          (3, "male", 32, 10, "yes", 4, 14, 4, 3),  
          (7, "male", 47, 15, "yes", 3, 16, 4, 2),  
          (1, "male", 22, 1.5, "yes", 1, 12, 2, 5),  
          (7, "female", 32, 10, "yes", 2, 18, 5, 4),  
          (2, "male", 32, 10, "yes", 2, 17, 6, 5),  
          (2, "male", 22, 7, "yes", 3, 18, 6, 2),  
          (1, "female", 32, 15, "yes", 3, 14, 1, 5))
    	  
    val data = dataList.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
    
    

    GBT建模

    data.createOrReplaceTempView("data")
    
    // 字符类型转换成数值   
    val labelWhere = "affairs as label"
    val genderWhere = "case when gender='female' then 0 else cast(1 as double) end as gender"
    val childrenWhere = "case when children='no' then 0 else cast(1 as double) end as children"
    
    val dataLabelDF = spark.sql(s"select $labelWhere, $genderWhere,age,yearsmarried,$childrenWhere,religiousness,education,occupation,rating from data")
    
    val featuresArray = Array("gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
    
    // 字段转换成特征向量   
    val assembler = new VectorAssembler().setInputCols(featuresArray).setOutputCol("features")
    val vecDF: DataFrame = assembler.transform(dataLabelDF)
    vecDF.show(10, truncate = false)
    
    // 将数据分为训练和测试集(30%进行测试)  
    val Array(trainingDF, testDF) = vecDF.randomSplit(Array(0.7, 0.3))
    
    // 自动识别分类的特征,并对它们进行索引   
    // 具有大于5个不同的值的特征被视为连续。   
    val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(5)
    
    
    
    // 训练GBT模型
    val gbt = new GBTRegressor().setLabelCol("label").setFeaturesCol("indexedFeatures").setImpurity("variance").setLossType("squared").setMaxIter(100).setMinInstancesPerNode(100)
    
    
    
    // Chain indexer and GBT in a Pipeline.
    val pipeline = new Pipeline().setStages(Array(featureIndexer, gbt))
    
    // Train model. This also runs the indexer.
    val model = pipeline.fit(trainingDF)
    
    // 做出预测
    val predictions = model.transform(testDF)
    
    // 预测样本展示
    predictions.select("prediction", "label", "features").show(20,false)
    
    // 选择(预测标签,实际标签),并计算测试误差。
    val evaluator = new RegressionEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("rmse")
    val rmse = evaluator.evaluate(predictions)
    println("Root Mean Squared Error (RMSE) on test data = " + rmse)
    
    val gbtModel = model.stages(1).asInstanceOf[GBTRegressionModel]
    println("Learned regression GBT model:
    " + gbtModel.toDebugString)
    

    代码执行结果

    // 预测样本展示
    predictions.select("prediction", "label", "features").show(20,false)
    +--------------------+-----+-------------------------------------+
    |prediction          |label|features                             |
    +--------------------+-----+-------------------------------------+
    |0.4101891901517728  |0.0  |[0.0,22.0,0.125,0.0,2.0,14.0,4.0,5.0]|
    |-0.1761972212866274 |0.0  |[0.0,22.0,0.125,0.0,4.0,12.0,4.0,5.0]|
    |-0.1761972212866274 |0.0  |[0.0,22.0,0.125,0.0,4.0,14.0,4.0,5.0]|
    |0.27341988209156776 |0.0  |[0.0,22.0,0.417,1.0,3.0,14.0,3.0,5.0]|
    |1.3762204060172503  |0.0  |[0.0,22.0,0.75,0.0,2.0,12.0,1.0,3.0] |
    |0.7076853285807452  |0.0  |[0.0,22.0,0.75,0.0,3.0,16.0,5.0,4.0] |
    |-0.03713901460785563|0.0  |[0.0,22.0,0.75,0.0,4.0,16.0,1.0,5.0] |
    |-0.06232021237014856|0.0  |[0.0,22.0,0.75,0.0,5.0,14.0,3.0,5.0] |
    |1.3658576179015465  |0.0  |[0.0,22.0,1.5,0.0,2.0,17.0,5.0,4.0]  |
    |0.5855203584610474  |0.0  |[0.0,22.0,1.5,0.0,2.0,18.0,5.0,5.0]  |
    |1.3423069921702913  |0.0  |[0.0,22.0,1.5,0.0,3.0,16.0,5.0,3.0]  |
    |-0.04277366447290868|0.0  |[0.0,22.0,1.5,0.0,5.0,16.0,5.0,5.0]  |
    |0.15390822331003562 |0.0  |[0.0,22.0,1.5,1.0,3.0,16.0,5.0,5.0]  |
    |-0.05759270231176094|0.0  |[0.0,22.0,1.5,1.0,4.0,12.0,1.0,5.0]  |
    |0.9937700279999649  |0.0  |[0.0,27.0,4.0,0.0,3.0,17.0,5.0,5.0]  |
    |0.07881499915541987 |0.0  |[0.0,27.0,4.0,0.0,4.0,14.0,5.0,4.0]  |
    |0.8853324368229462  |0.0  |[0.0,27.0,4.0,1.0,2.0,18.0,5.0,5.0]  |
    |2.470441722865642   |0.0  |[0.0,27.0,4.0,1.0,2.0,18.0,6.0,1.0]  |
    |1.8994848597314158  |0.0  |[0.0,27.0,4.0,1.0,3.0,17.0,5.0,4.0]  |
    |1.2016151328027989  |0.0  |[0.0,27.0,7.0,0.0,3.0,16.0,5.0,4.0]  |
    +--------------------+-----+-------------------------------------+
    only showing top 20 rows
    
    // 选择(预测标签,实际标签),并计算测试误差。
    val evaluator = new RegressionEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("rmse")
    evaluator: org.apache.spark.ml.evaluation.RegressionEvaluator = regEval_ac9cce181927
    
    val rmse = evaluator.evaluate(predictions)
    rmse: Double = 3.398154308642416
    
    println("Root Mean Squared Error (RMSE) on test data = " + rmse)
    Root Mean Squared Error (RMSE) on test data = 3.398154308642416
    
    val gbtModel = model.stages(1).asInstanceOf[GBTRegressionModel]
    gbtModel: org.apache.spark.ml.regression.GBTRegressionModel = GBTRegressionModel (uid=gbtr_fef8e464e0a9) with 100 trees
    
    println("Learned regression GBT model:
    " + gbtModel.toDebugString)
    Learned regression GBT model:
    GBTRegressionModel (uid=gbtr_fef8e464e0a9) with 100 trees
      Tree 0 (weight 1.0):
        If (feature 7 in {3.0,4.0})
         If (feature 5 <= 16.0)
          Predict: 0.5493827160493827
         Else (feature 5 > 16.0)
          Predict: 1.4025974025974026
        Else (feature 7 not in {3.0,4.0})
         Predict: 2.3275862068965516
      Tree 1 (weight 0.1):
        If (feature 4 in {3.0,4.0})
         Predict: -1.2041803848556716
        Else (feature 4 not in {3.0,4.0})
         If (feature 2 <= 4.0)
          Predict: -0.23528687185418157
         Else (feature 2 > 4.0)
          Predict: 2.122676104681004
      Tree 2 (weight 0.1):
        If (feature 7 in {2.0,4.0})
         If (feature 4 in {3.0,4.0})
          Predict: -1.656323757972103
         Else (feature 4 not in {3.0,4.0})
          Predict: -0.15543767468869207
        Else (feature 7 not in {2.0,4.0})
         Predict: 1.0278733947646754
      Tree 3 (weight 0.1):
        If (feature 4 in {3.0,4.0})
         Predict: -0.8641507684538178
        Else (feature 4 not in {3.0,4.0})
         If (feature 2 <= 4.0)
          Predict: -0.2273383819199587
         Else (feature 2 > 4.0)
          Predict: 1.5798596443417063
      Tree 4 (weight 0.1):
        If (feature 7 in {2.0,4.0})
         If (feature 4 in {2.0,3.0})
          Predict: -1.236525064691553
         Else (feature 4 not in {2.0,3.0})
          Predict: 0.012163057801348584
        Else (feature 7 not in {2.0,4.0})
         Predict: 0.7792547820010268
      Tree 5 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.9113096501035378
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.29094960891340704
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.9943737179675912
      Tree 6 (weight 0.1):
        If (feature 4 in {3.0,4.0})
         Predict: -0.5816029069016012
        Else (feature 4 not in {3.0,4.0})
         If (feature 2 <= 4.0)
          Predict: -0.20084493904163633
         Else (feature 2 > 4.0)
          Predict: 1.109569351901809
      Tree 7 (weight 0.1):
        If (feature 7 in {2.0,3.0})
         If (feature 4 in {3.0,4.0})
          Predict: -1.206216468680912
         Else (feature 4 not in {3.0,4.0})
          Predict: 0.08655545395654013
        Else (feature 7 not in {2.0,3.0})
         If (feature 1 <= 27.0)
          Predict: -0.20724446825839268
         Else (feature 1 > 27.0)
          Predict: 1.2660056558164223
      Tree 8 (weight 0.1):
        If (feature 7 in {2.0,4.0})
         If (feature 0 in {1.0})
          Predict: -1.0182659703495558
         Else (feature 0 not in {1.0})
          Predict: 0.024231870307628158
        Else (feature 7 not in {2.0,4.0})
         Predict: 0.5318939487492129
      Tree 9 (weight 0.1):
        If (feature 7 in {2.0,3.0})
         If (feature 4 in {3.0,4.0})
          Predict: -0.9976742554437054
         Else (feature 4 not in {3.0,4.0})
          Predict: 0.0200794486795141
        Else (feature 7 not in {2.0,3.0})
         If (feature 1 <= 27.0)
          Predict: -0.12395645984936833
         Else (feature 1 > 27.0)
          Predict: 1.0545881786994915
      Tree 10 (weight 0.1):
        If (feature 7 in {2.0,4.0})
         If (feature 0 in {1.0})
          Predict: -0.8521104101261413
         Else (feature 0 not in {1.0})
          Predict: 4.984317868844511E-4
        Else (feature 7 not in {2.0,4.0})
         Predict: 0.45849128239680126
      Tree 11 (weight 0.1):
        If (feature 7 in {2.0,3.0})
         If (feature 4 in {3.0,4.0})
          Predict: -0.8266429201133548
         Else (feature 4 not in {3.0,4.0})
          Predict: -0.02631141136282202
        Else (feature 7 not in {2.0,3.0})
         If (feature 1 <= 27.0)
          Predict: -0.062192679809529076
         Else (feature 1 > 27.0)
          Predict: 0.8790672857730457
      Tree 12 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.5817255532116069
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.22193937162964048
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.5907959823435813
      Tree 13 (weight 0.1):
        If (feature 7 in {2.0,3.0})
         If (feature 0 in {0.0})
          Predict: -0.7172113654395978
         Else (feature 0 not in {0.0})
          Predict: 0.006042105742806256
        Else (feature 7 not in {2.0,3.0})
         If (feature 4 in {2.0,3.0})
          Predict: -0.10106364169472773
         Else (feature 4 not in {2.0,3.0})
          Predict: 0.7978475987081632
      Tree 14 (weight 0.1):
        If (feature 2 <= 4.0)
         Predict: -0.43106846024675494
        Else (feature 2 > 4.0)
         If (feature 0 in {0.0})
          Predict: -0.24358569405700833
         Else (feature 0 not in {0.0})
          Predict: 0.8430302370437416
      Tree 15 (weight 0.1):
        If (feature 7 in {2.0,4.0})
         If (feature 0 in {1.0})
          Predict: -0.7548596599426589
         Else (feature 0 not in {1.0})
          Predict: 0.08592188188354978
        Else (feature 7 not in {2.0,4.0})
         Predict: 0.3483003891556437
      Tree 16 (weight 0.1):
        If (feature 7 in {2.0,3.0})
         If (feature 4 in {3.0,4.0})
          Predict: -0.6305692411738641
         Else (feature 4 not in {3.0,4.0})
          Predict: -0.03294875487717117
        Else (feature 7 not in {2.0,3.0})
         If (feature 5 <= 16.0)
          Predict: 0.6769789481885423
         Else (feature 5 > 16.0)
          Predict: -0.09745409631073557
      Tree 17 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 5 <= 17.0)
          If (feature 5 <= 14.0)
           Predict: -0.08997529948919183
          Else (feature 5 > 14.0)
           Predict: 0.329830215921939
         Else (feature 5 > 17.0)
          Predict: -0.7669351353559263
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.4823947721214674
      Tree 18 (weight 0.1):
        If (feature 2 <= 1.5)
         Predict: -0.5555885187209292
        Else (feature 2 > 1.5)
         If (feature 7 in {2.0,3.0})
          Predict: -0.22796338045378814
         Else (feature 7 not in {2.0,3.0})
          Predict: 0.6263893424099629
      Tree 19 (weight 0.1):
        If (feature 7 in {2.0,4.0})
         If (feature 4 in {1.0,2.0})
          Predict: -0.8774721304893098
         Else (feature 4 not in {1.0,2.0})
          Predict: 0.2508177659024886
        Else (feature 7 not in {2.0,4.0})
         Predict: 0.3374172716953837
      Tree 20 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.6771642657012377
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.42281474905416766
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.35053210010281294
      Tree 21 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 5 <= 17.0)
          If (feature 5 <= 14.0)
           Predict: -0.08877452416140048
          Else (feature 5 > 14.0)
           Predict: 0.2745756432464146
         Else (feature 5 > 17.0)
          Predict: -0.6587419697090034
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.43241117032884024
      Tree 22 (weight 0.1):
        If (feature 6 <= 5.0)
         If (feature 7 in {1.0,2.0,3.0})
          Predict: -0.6185527002758889
         Else (feature 7 not in {1.0,2.0,3.0})
          Predict: 0.45411581627673897
        Else (feature 6 > 5.0)
         Predict: 0.4365068498808643
      Tree 23 (weight 0.1):
        If (feature 2 <= 4.0)
         Predict: -0.30885690781314273
        Else (feature 2 > 4.0)
         If (feature 0 in {0.0})
          Predict: -0.3023921469776914
         Else (feature 0 not in {0.0})
          Predict: 0.7430519171140063
      Tree 24 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.5879792368509512
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.37672042118327953
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.29665456956343084
      Tree 25 (weight 0.1):
        If (feature 7 in {2.0,3.0})
         If (feature 5 <= 16.0)
          Predict: -0.4358101720832422
         Else (feature 5 > 16.0)
          Predict: 0.004291841246162318
        Else (feature 7 not in {2.0,3.0})
         If (feature 4 in {2.0,3.0})
          Predict: -0.09212211469331538
         Else (feature 4 not in {2.0,3.0})
          Predict: 0.5390477982838969
      Tree 26 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 5 <= 17.0)
          If (feature 5 <= 14.0)
           Predict: -0.002870097057736064
          Else (feature 5 > 14.0)
           Predict: 0.24176485735488987
         Else (feature 5 > 17.0)
          Predict: -0.6526018743363831
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.3789197752633368
      Tree 27 (weight 0.1):
        If (feature 2 <= 1.5)
         Predict: -0.40670356052123396
        Else (feature 2 > 1.5)
         If (feature 5 <= 14.0)
          Predict: -0.3423186434168276
         Else (feature 5 > 14.0)
          If (feature 1 <= 32.0)
           Predict: 0.07310002678020948
          Else (feature 1 > 32.0)
           Predict: 0.6220211186229235
      Tree 28 (weight 0.1):
        If (feature 7 in {2.0,3.0})
         If (feature 2 <= 7.0)
          Predict: -0.37077050934682493
         Else (feature 2 > 7.0)
          Predict: -0.013168403089436417
        Else (feature 7 not in {2.0,3.0})
         If (feature 4 in {1.0,2.0})
          Predict: -0.13649988018105869
         Else (feature 4 not in {1.0,2.0})
          Predict: 0.5307658578968613
      Tree 29 (weight 0.1):
        If (feature 5 <= 17.0)
         If (feature 2 <= 7.0)
          Predict: 0.3743438409942865
         Else (feature 2 > 7.0)
          Predict: -0.19784197849605942
        Else (feature 5 > 17.0)
         Predict: -0.26391914047591847
      Tree 30 (weight 0.1):
        If (feature 2 <= 1.5)
         Predict: -0.3542028568716046
        Else (feature 2 > 1.5)
         If (feature 0 in {0.0})
          Predict: -0.20390871143361886
         Else (feature 0 not in {0.0})
          Predict: 0.41078338397447534
      Tree 31 (weight 0.1):
        If (feature 7 in {2.0,4.0})
         If (feature 4 in {1.0,2.0})
          Predict: -0.6976532686788715
         Else (feature 4 not in {1.0,2.0})
          Predict: 0.305128042791237
        Else (feature 7 not in {2.0,4.0})
         Predict: 0.19996604836748177
      Tree 32 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.5026109921920161
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.2987696061070014
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.2722787792862316
      Tree 33 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 5 <= 16.0)
          Predict: 0.210843945397363
         Else (feature 5 > 16.0)
          Predict: -0.5101274394699526
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.3566655122216068
      Tree 34 (weight 0.1):
        If (feature 7 in {2.0,3.0})
         If (feature 5 <= 16.0)
          Predict: -0.38259410181020964
         Else (feature 5 > 16.0)
          Predict: 0.014040427378239158
        Else (feature 7 not in {2.0,3.0})
         If (feature 4 in {2.0,3.0})
          Predict: -0.0849154281925315
         Else (feature 4 not in {2.0,3.0})
          Predict: 0.46724301245027106
      Tree 35 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 5 <= 16.0)
          Predict: 0.18214237271776318
         Else (feature 5 > 16.0)
          Predict: -0.4336716289604328
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.299121819193453
      Tree 36 (weight 0.1):
        If (feature 6 <= 5.0)
         If (feature 7 in {1.0,2.0,3.0})
          Predict: -0.46344255624122804
         Else (feature 7 not in {1.0,2.0,3.0})
          Predict: 0.3640577311836569
        Else (feature 6 > 5.0)
         Predict: 0.29888044555378185
      Tree 37 (weight 0.1):
        If (feature 2 <= 4.0)
         Predict: -0.21827462552678883
        Else (feature 2 > 4.0)
         If (feature 4 in {1.0,2.0,4.0})
          Predict: -0.27188720417988843
         Else (feature 4 not in {1.0,2.0,4.0})
          Predict: 0.6789439047090412
      Tree 38 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.44714482741915457
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.2834580745796812
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.22803431309861022
      Tree 39 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 5 <= 17.0)
          If (feature 5 <= 14.0)
           Predict: -0.007567675735672283
          Else (feature 5 > 14.0)
           Predict: 0.19528462943330932
         Else (feature 5 > 17.0)
          Predict: -0.4793181468190617
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.2674592141367692
      Tree 40 (weight 0.1):
        If (feature 6 <= 5.0)
         If (feature 7 in {1.0,2.0,3.0})
          Predict: -0.4058905159858142
         Else (feature 7 not in {1.0,2.0,3.0})
          Predict: 0.3146287783924926
        Else (feature 6 > 5.0)
         Predict: 0.26675364810481134
      Tree 41 (weight 0.1):
        If (feature 2 <= 4.0)
         Predict: -0.1962735566727834
        Else (feature 2 > 4.0)
         If (feature 4 in {1.0,2.0,4.0})
          Predict: -0.2198867197911281
         Else (feature 4 not in {1.0,2.0,4.0})
          Predict: 0.5783627397068297
      Tree 42 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.40458335821187674
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.2500008588513438
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.21153528262965707
      Tree 43 (weight 0.1):
        If (feature 0 in {0.0})
         If (feature 4 in {1.0,2.0})
          Predict: -0.5272784668998509
         Else (feature 4 not in {1.0,2.0})
          Predict: 0.27964029342808727
        Else (feature 0 not in {0.0})
         Predict: 0.1521276760243921
      Tree 44 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 5 <= 16.0)
          Predict: 0.15476481680084098
         Else (feature 5 > 16.0)
          Predict: -0.404648885656257
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.20041323422811966
      Tree 45 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 2 <= 10.0)
          Predict: 0.08760703216804985
         Else (feature 2 > 10.0)
          Predict: -0.4363843462222189
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.26125493904601726
      Tree 46 (weight 0.1):
        If (feature 3 in {0.0})
         Predict: -0.24273871330852773
        Else (feature 3 not in {0.0})
         If (feature 1 <= 32.0)
          Predict: 0.4194956858219603
         Else (feature 1 > 32.0)
          Predict: -0.2641351223987055
      Tree 47 (weight 0.1):
        If (feature 2 <= 4.0)
         Predict: -0.1842536884228515
        Else (feature 2 > 4.0)
         If (feature 0 in {0.0})
          Predict: -0.2556437505158
         Else (feature 0 not in {0.0})
          Predict: 0.5250957711438612
      Tree 48 (weight 0.1):
        If (feature 5 <= 17.0)
         If (feature 2 <= 7.0)
          Predict: 0.3097249980758783
         Else (feature 2 > 7.0)
          Predict: -0.20927194758789183
        Else (feature 5 > 17.0)
         Predict: -0.17974425051995072
      Tree 49 (weight 0.1):
        If (feature 2 <= 7.0)
         If (feature 4 in {0.0,1.0,4.0})
          Predict: -0.4391662932031461
         Else (feature 4 not in {0.0,1.0,4.0})
          Predict: 0.14899682915441242
        Else (feature 2 > 7.0)
         Predict: 0.17135087498922727
      Tree 50 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.34595892539052775
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.18864305733321962
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.2010882111695174
      Tree 51 (weight 0.1):
        If (feature 2 <= 7.0)
         If (feature 4 in {0.0,1.0,4.0})
          Predict: -0.37928770492554514
         Else (feature 4 not in {0.0,1.0,4.0})
          Predict: 0.14598978080630404
        Else (feature 2 > 7.0)
         Predict: 0.13789872815456017
      Tree 52 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 0 in {0.0})
          Predict: -0.3561599449500433
         Else (feature 0 not in {0.0})
          Predict: 0.13480317862464578
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.20022083229153956
      Tree 53 (weight 0.1):
        If (feature 7 in {0.0,2.0,3.0})
         If (feature 2 <= 7.0)
          Predict: -0.3034759538679022
         Else (feature 2 > 7.0)
          Predict: 0.030832254829924348
        Else (feature 7 not in {0.0,2.0,3.0})
         If (feature 4 in {2.0,3.0})
          Predict: -0.09791161435829351
         Else (feature 4 not in {2.0,3.0})
          Predict: 0.37430560009039743
      Tree 54 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 5 <= 17.0)
          If (feature 5 <= 14.0)
           Predict: 0.0032991310676856803
          Else (feature 5 > 14.0)
           Predict: 0.16323825545485057
         Else (feature 5 > 17.0)
          Predict: -0.3944469633207582
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.20930077591956386
      Tree 55 (weight 0.1):
        If (feature 6 <= 5.0)
         If (feature 7 in {1.0,2.0,3.0})
          Predict: -0.3423717432439813
         Else (feature 7 not in {1.0,2.0,3.0})
          Predict: 0.2845950114476868
        Else (feature 6 > 5.0)
         Predict: 0.20229881713282846
      Tree 56 (weight 0.1):
        If (feature 7 in {0.0,3.0,4.0})
         If (feature 4 in {0.0,2.0,4.0})
          Predict: -0.34473853796161436
         Else (feature 4 not in {0.0,2.0,4.0})
          Predict: 0.06509817623441427
        Else (feature 7 not in {0.0,3.0,4.0})
         Predict: 0.29637410144956194
      Tree 57 (weight 0.1):
        If (feature 4 in {1.0,3.0})
         If (feature 7 in {0.0,2.0,4.0})
          Predict: -0.4106960501148285
         Else (feature 7 not in {0.0,2.0,4.0})
          Predict: 0.3067013100269527
        Else (feature 4 not in {1.0,3.0})
         Predict: 0.14212125967385864
      Tree 58 (weight 0.1):
        If (feature 7 in {0.0,3.0,4.0})
         If (feature 2 <= 4.0)
          Predict: 0.14321927963357617
         Else (feature 2 > 4.0)
          Predict: -0.24134920569281398
        Else (feature 7 not in {0.0,3.0,4.0})
         Predict: 0.24427269014743427
      Tree 59 (weight 0.1):
        If (feature 2 <= 4.0)
         Predict: -0.1614525889780999
        Else (feature 2 > 4.0)
         If (feature 4 in {1.0,2.0})
          Predict: -0.3282296392038987
         Else (feature 4 not in {1.0,2.0})
          Predict: 0.4000388393084363
      Tree 60 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 5 <= 16.0)
          Predict: 0.11970240371799991
         Else (feature 5 > 16.0)
          Predict: -0.32629555023475065
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.16650169466955037
      Tree 61 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 2 <= 10.0)
          Predict: 0.0785346253080802
         Else (feature 2 > 10.0)
          Predict: -0.3597426698174828
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.2043621605717289
      Tree 62 (weight 0.1):
        If (feature 2 <= 4.0)
         Predict: -0.16092189760093678
        Else (feature 2 > 4.0)
         If (feature 4 in {1.0,2.0})
          Predict: -0.2777794408515309
         Else (feature 4 not in {1.0,2.0})
          Predict: 0.3648602619594364
      Tree 63 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.28929221043435893
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.16866103762864476
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.159374360780632
      Tree 64 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 2 <= 10.0)
          Predict: 0.06551610731177633
         Else (feature 2 > 10.0)
          Predict: -0.3256517139452475
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.1947184133018806
      Tree 65 (weight 0.1):
        If (feature 2 <= 7.0)
         If (feature 4 in {0.0,1.0,4.0})
          Predict: -0.3907242793892747
         Else (feature 4 not in {0.0,1.0,4.0})
          Predict: 0.14983189044748124
        Else (feature 2 > 7.0)
         Predict: 0.14238312259616695
      Tree 66 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 0 in {0.0})
          Predict: -0.3052694134166843
         Else (feature 0 not in {0.0})
          Predict: 0.1242437441599561
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.16364917831715908
      Tree 67 (weight 0.1):
        If (feature 2 <= 7.0)
         If (feature 4 in {0.0,1.0,4.0})
          Predict: -0.3374888895457584
         Else (feature 4 not in {0.0,1.0,4.0})
          Predict: 0.13796807928365779
        Else (feature 2 > 7.0)
         Predict: 0.11799951195954451
      Tree 68 (weight 0.1):
        If (feature 4 in {2.0,3.0})
         If (feature 2 <= 7.0)
          Predict: 0.11037446342692632
         Else (feature 2 > 7.0)
          Predict: -0.3691154257571632
        Else (feature 4 not in {2.0,3.0})
         If (feature 1 <= 27.0)
          Predict: -0.1067359768344909
         Else (feature 1 > 27.0)
          Predict: 0.3469652449886723
      Tree 69 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 5 <= 16.0)
          Predict: 0.09765499691255237
         Else (feature 5 > 16.0)
          Predict: -0.2815290474503235
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.14906241645292465
      Tree 70 (weight 0.1):
        If (feature 7 in {0.0,2.0,3.0})
         If (feature 5 <= 16.0)
          Predict: -0.29299461722232156
         Else (feature 5 > 16.0)
          Predict: 0.09747540373437305
        Else (feature 7 not in {0.0,2.0,3.0})
         If (feature 4 in {1.0,2.0})
          Predict: -0.10994079878853985
         Else (feature 4 not in {1.0,2.0})
          Predict: 0.3523743079378049
      Tree 71 (weight 0.1):
        If (feature 2 <= 7.0)
         If (feature 0 in {1.0})
          Predict: -0.3422083471951224
         Else (feature 0 not in {1.0})
          Predict: 0.13300441855841866
        Else (feature 2 > 7.0)
         Predict: 0.10695163170240178
      Tree 72 (weight 0.1):
        If (feature 6 <= 5.0)
         If (feature 7 in {1.0,2.0,3.0})
          Predict: -0.31582473516501897
         Else (feature 7 not in {1.0,2.0,3.0})
          Predict: 0.2796042594325624
        Else (feature 6 > 5.0)
         Predict: 0.16641824158295654
      Tree 73 (weight 0.1):
        If (feature 7 in {0.0,3.0,4.0})
         If (feature 2 <= 4.0)
          Predict: 0.15145985374076318
         Else (feature 2 > 4.0)
          Predict: -0.25337987124956984
        Else (feature 7 not in {0.0,3.0,4.0})
         Predict: 0.2550491173591116
      Tree 74 (weight 0.1):
        If (feature 3 in {0.0})
         Predict: -0.17047319029247388
        Else (feature 3 not in {0.0})
         If (feature 1 <= 32.0)
          Predict: 0.35333760032570316
         Else (feature 1 > 32.0)
          Predict: -0.2519783337953501
      Tree 75 (weight 0.1):
        If (feature 2 <= 7.0)
         If (feature 0 in {1.0})
          Predict: -0.31803815956744486
         Else (feature 0 not in {1.0})
          Predict: 0.07062037654003865
        Else (feature 2 > 7.0)
         Predict: 0.13215020722610155
      Tree 76 (weight 0.1):
        If (feature 2 <= 7.0)
         If (feature 4 in {0.0,1.0,4.0})
          Predict: -0.2849060057188383
         Else (feature 4 not in {0.0,1.0,4.0})
          Predict: 0.10599732481645478
        Else (feature 2 > 7.0)
         Predict: 0.10572016578088146
      Tree 77 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.29204411697391675
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.17154183331704606
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.1598642924832302
      Tree 78 (weight 0.1):
        If (feature 7 in {0.0,3.0,4.0})
         If (feature 2 <= 4.0)
          Predict: 0.15620197855107712
         Else (feature 2 > 4.0)
          Predict: -0.2358472594212062
        Else (feature 7 not in {0.0,3.0,4.0})
         Predict: 0.21805292474450014
      Tree 79 (weight 0.1):
        If (feature 2 <= 4.0)
         Predict: -0.1310122593821202
        Else (feature 2 > 4.0)
         If (feature 0 in {0.0})
          Predict: -0.20525206330385296
         Else (feature 0 not in {0.0})
          Predict: 0.3988936865730646
      Tree 80 (weight 0.1):
        If (feature 6 <= 4.0)
         Predict: 0.118723210443705
        Else (feature 6 > 4.0)
         If (feature 2 <= 7.0)
          Predict: -0.5009441711869456
         Else (feature 2 > 7.0)
          Predict: 0.37560154066955664
      Tree 81 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 5 <= 16.0)
          Predict: 0.1011898275621567
         Else (feature 5 > 16.0)
          Predict: -0.27541549529142817
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.1403917694564152
      Tree 82 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 2 <= 10.0)
          Predict: 0.10485592624097106
         Else (feature 2 > 10.0)
          Predict: -0.3561693608362045
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.1550785478603467
      Tree 83 (weight 0.1):
        If (feature 6 <= 5.0)
         If (feature 7 in {1.0,2.0,3.0})
          Predict: -0.29578292364809544
         Else (feature 7 not in {1.0,2.0,3.0})
          Predict: 0.27307326206821303
        Else (feature 6 > 5.0)
         Predict: 0.14259778729589817
      Tree 84 (weight 0.1):
        If (feature 7 in {0.0,3.0,4.0})
         If (feature 2 <= 10.0)
          If (feature 0 in {1.0})
           Predict: -0.4968444641407045
          Else (feature 0 not in {1.0})
           Predict: 0.039833192482040626
         Else (feature 2 > 10.0)
          Predict: 0.23547722042459557
        Else (feature 7 not in {0.0,3.0,4.0})
         Predict: 0.20092157887884146
      Tree 85 (weight 0.1):
        If (feature 0 in {0.0})
         If (feature 4 in {1.0,2.0})
          Predict: -0.41927295132296866
         Else (feature 4 not in {1.0,2.0})
          Predict: 0.27264426276668075
        Else (feature 0 not in {0.0})
         Predict: 0.09473118321732256
      Tree 86 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.2627520575537636
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.16852637689996566
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.13242206940974757
      Tree 87 (weight 0.1):
        If (feature 4 in {1.0,3.0,4.0})
         If (feature 2 <= 10.0)
          Predict: 0.0968195867364572
         Else (feature 2 > 10.0)
          Predict: -0.33632764976664026
        Else (feature 4 not in {1.0,3.0,4.0})
         Predict: 0.15026643957145142
      Tree 88 (weight 0.1):
        If (feature 5 <= 16.0)
         If (feature 4 in {1.0,2.0})
          Predict: -0.5956659813535735
         Else (feature 4 not in {1.0,2.0})
          Predict: 0.4529037429667299
        Else (feature 5 > 16.0)
         Predict: 0.08159901911739971
      Tree 89 (weight 0.1):
        If (feature 4 in {3.0,4.0})
         Predict: -0.12934611014945963
        Else (feature 4 not in {3.0,4.0})
         If (feature 5 <= 16.0)
          Predict: -0.40930103952472296
         Else (feature 5 > 16.0)
          Predict: 0.6895088054273292
      Tree 90 (weight 0.1):
        If (feature 5 <= 17.0)
         If (feature 2 <= 7.0)
          Predict: 0.34370866252824434
         Else (feature 2 > 7.0)
          Predict: -0.2630177858922842
        Else (feature 5 > 17.0)
         Predict: -0.17338519514465173
      Tree 91 (weight 0.1):
        If (feature 5 <= 17.0)
         If (feature 4 in {0.0,3.0})
          Predict: -0.25104546806534994
         Else (feature 4 not in {0.0,3.0})
          Predict: 0.2702826069825862
        Else (feature 5 > 17.0)
         Predict: -0.13870815611572082
      Tree 92 (weight 0.1):
        If (feature 2 <= 7.0)
         If (feature 4 in {0.0,1.0,4.0})
          Predict: -0.3031434977322535
         Else (feature 4 not in {0.0,1.0,4.0})
          Predict: 0.13250771045104892
        Else (feature 2 > 7.0)
         Predict: 0.10098942121784923
      Tree 93 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 0 in {0.0})
          Predict: -0.2757474131110731
         Else (feature 0 not in {0.0})
          Predict: 0.13947524024110314
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.12289122084107594
      Tree 94 (weight 0.1):
        If (feature 6 <= 4.0)
         Predict: 0.11785650049644145
        Else (feature 6 > 4.0)
         If (feature 2 <= 7.0)
          Predict: -0.45759270568822835
         Else (feature 2 > 7.0)
          Predict: 0.33032979113507405
      Tree 95 (weight 0.1):
        If (feature 5 <= 17.0)
         If (feature 2 <= 7.0)
          Predict: 0.305333529673242
         Else (feature 2 > 7.0)
          Predict: -0.2699559779520363
        Else (feature 5 > 17.0)
         Predict: -0.12326900427506793
      Tree 96 (weight 0.1):
        If (feature 4 in {2.0,3.0,4.0})
         If (feature 7 in {2.0,4.0})
          Predict: -0.2082822352931695
         Else (feature 7 not in {2.0,4.0})
          Predict: 0.1344687038228447
        Else (feature 4 not in {2.0,3.0,4.0})
         Predict: 0.10426390938251325
      Tree 97 (weight 0.1):
        If (feature 7 in {0.0,2.0,3.0})
         If (feature 4 in {0.0,3.0,4.0})
          Predict: -0.24041237137909066
         Else (feature 4 not in {0.0,3.0,4.0})
          Predict: 0.10786460999909507
        Else (feature 7 not in {0.0,2.0,3.0})
         If (feature 4 in {1.0,2.0})
          Predict: -0.12345549505611093
         Else (feature 4 not in {1.0,2.0})
          Predict: 0.3042271274045207
      Tree 98 (weight 0.1):
        If (feature 7 in {0.0,3.0,4.0})
         If (feature 4 in {0.0,2.0,4.0})
          Predict: -0.3300305557432017
         Else (feature 4 not in {0.0,2.0,4.0})
          Predict: 0.11539664128561841
        Else (feature 7 not in {0.0,3.0,4.0})
         Predict: 0.18650654204571715
      Tree 99 (weight 0.1):
        If (feature 4 in {1.0,3.0})
         If (feature 1 <= 27.0)
          Predict: -0.17881873531148437
         Else (feature 1 > 27.0)
          Predict: 0.021947906677333283
        Else (feature 4 not in {1.0,3.0})
         Predict: 0.11104367501262459
    
  • 相关阅读:
    使用contentProvider
    创建Sqlite数据库(一)
    AIDL实现进程间通信
    Messenger实现进程间通信(IPC)
    Serializable使用
    Parcelable使用(二)
    STAR法则
    Python系列-------基本语法
    前端随心记---------面试题集
    前端随心记---------惟客科技面试
  • 原文地址:https://www.cnblogs.com/wwxbi/p/6248271.html
Copyright © 2020-2023  润新知