• Flink:流处理Api


    创建执行环境

    getExecutionEnvironment

    创建一个执行环境,表示当前执行程序的上下文。 如果程序是独立调用的,则此方法返回本地执行环境;如果从命令行客户端调用程序以提交到集群,则此方法返回此集群的执行环境,也就是说,getExecutionEnvironment 会根据查询运行的方式决定返回什么样的运行环境,是最常用的一种创建执行环境的方式。

    ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    

    如果没有设置并行度,会以 flink-conf.yaml 中的配置为准,默认是 1。

    image-20210901163951635

    createLocalEnvironment

    返回本地执行环境,需要在调用时指定默认的并行度。

    LocalStreamEnvironment env = StreamExecutionEnvironment.createLocalEnvironment(1);
    

    createRemoteEnvironment

    返回集群执行环境,将 Jar 提交到远程服务器。需要在调用时指定 JobManager 的 IP 和端口号,并指定要在集群中运行的 Jar 包。

    public static StreamExecutionEnvironment createRemoteEnvironment(String host, int port, String... jarFiles)
    

    source

    从集合读取数据

    java实体类:

    /**
     * @author wen.jie
     * @date 2021/9/1 16:45
     * 传感器温度读数的数据类型
     */
    public class SensorReading {
    
        //id
        private String id;
    
        //时间戳
        private Long timestamp;
    
        //温度
        private Double temperature;
    	//toString、getter、setter、有参无参构造省略
    }
    

    测试:

        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            DataStream<SensorReading> sensorDataStream = env.fromCollection(Arrays.asList(
                    new SensorReading("sensor_1", 1547718199L, 35.8),
                    new SensorReading("sensor_6", 1547718201L, 15.4),
                    new SensorReading("sensor_7", 1547718202L, 6.7),
                    new SensorReading("sensor_10", 1547718205L, 38.1)
            ));
    
            DataStream<Integer> integerDataStream = env.fromElements(1, 2, 5);
    
            sensorDataStream.print();
            integerDataStream.print().setParallelism(1);
    
            env.execute();
        }
    

    image-20210901165703786

    从文件读取数据

    sensor.txt:

    sensor_1 1547718199L 35.8
    sensor_6 1547718201L 15.4
    sensor_7 1547718202L 6.7
    sensor_10 1547718205L 38.1
    

    测试代码:

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStream<String> sensorDataStream = env.readTextFile("D:\project\flink-demo\src\main\resources\sensor.txt");
        sensorDataStream.print();
        env.execute();
    }
    

    从kafka读取数据

    新增flink链接kafka的依赖:

    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-connector-kafka-0.11_2.12</artifactId>
        <version>1.10.1</version>
    </dependency>
    

    kafka安装包,具体安装过程这里不演示:https://archive.apache.org/dist/kafka/2.1.0/kafka_2.11-2.1.0.tgz

    代码:

        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            Properties properties = new Properties();
            properties.setProperty("bootstrap.servers", "192.168.1.77:9092");
            properties.setProperty("group.id", "consumer-group");
            properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            properties.setProperty("auto.offset.reset", "latest");
    
            DataStream<String> sensorDataStream = env.addSource(new FlinkKafkaConsumer011<>("sensor", new SimpleStringSchema(), properties));
            sensorDataStream.print();
            env.execute();
        }
    
    ./bin/kafka-console-producer.sh --broker-list 192.168.1.77:9092 --topic sensor
    

    效果如下:

    动画

    自定义source

    除了以上的 source 数据来源,我们还可以自定义 source。需要做的,只是传入 一个 SourceFunction 就可以。具体调用如下:

    DataStream<SensorReading> dataStream = env.addSource(new MySensor());
    

    我们希望可以随机生成传感器数据,MySensorSource 具体的代码实现如下:

        public static class MySensor implements SourceFunction<SensorReading> {
    
            private boolean running = true;
    
            @Override
            public void run(SourceContext<SensorReading> ctx) throws Exception {
                Random random = new Random();
                HashMap<String, Double> sensorTempMap = new HashMap<>();
                for( int i = 0; i < 10; i++ ){
                    sensorTempMap.put("sensor_" + (i + 1), 60 + random.nextGaussian() * 20);
                }
                while (running) {
                    for(String sensorId: sensorTempMap.keySet() ){
                        Double newTemp = sensorTempMap.get(sensorId) + random.nextGaussian();
                        sensorTempMap.put(sensorId, newTemp);
                        ctx.collect( new SensorReading(sensorId, System.currentTimeMillis(),
                                newTemp));
                    }
                    Thread.sleep(1000L);
                }
            }
    
            @Override
            public void cancel() {
                this.running = false;
            }
        }
    

    测试方法:

        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            //添加自定义数据源
            DataStreamSource<SensorReading> dataStreamSource = env.addSource(new MySensor());
            dataStreamSource.print();
            env.execute();
        }
    

    测试结果:

    123414351435t2435

    Transform

    基本转换操作

        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
            DataStream<String> inputStream = env.readTextFile("D:\project\flink-demo\src\main\resources\sensor.txt");
            //map
            DataStream<Integer> mapStream = inputStream.map(String::length);
            //flatmap
            DataStream<String> flatMapStream = inputStream.flatMap(new FlatMapFunction<String, String>() {
                @Override
                public void flatMap(String value, Collector<String> out) throws Exception {
                    String[] strs = value.split(" ");
                    for (String field : strs) {
                        out.collect(field);
                    }
                }
            });
            //filter
            DataStream<String> filterStream = inputStream.filter((str) -> str.startsWith("sensor_1"));
            mapStream.print("map");
            flatMapStream.print("flatMap");
            filterStream.print("filter");
    
            env.execute();
        }
    
    image-20210902090402041

    KeyBy

    image-20210902090851529

    DataStream → KeyedStream:逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同 key 的元素,在内部以 hash 的形式实现的。

    滚动聚合算子(Rolling Aggregation)

    这些算子可以针对 KeyedStream 的每一个支流做聚合。

    sum(),min(),max(),minBy(),maxBy()

    sensor.txt

    sensor_1 1547718199 35.8
    sensor_6 1547718201 15.4
    sensor_7 1547718202 6.7
    sensor_10 1547718205 38.1
    sensor_10 1547718204 39.1
    sensor_1 1547748199 32.8
    sensor_7 1547718234 6.1
    
        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
            DataStream<String> inputStream = env.readTextFile("D:\project\flink-demo\src\main\resources\sensor.txt");
    
            DataStream<SensorReading> mapStream = inputStream.map((str) -> {
                String[] split = str.split(" ");
                return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[2]));
            });
    
            //分组
            KeyedStream<SensorReading, Tuple> keyByStream = mapStream.keyBy("id");
    
            //滚动聚合,取当前最大值(来一条数据取一个最大值)
            DataStream<SensorReading> maxStream = keyByStream.maxBy("temperature");
    
            keyByStream.print("keyByStream");
            maxStream.print("maxStream");
    
            env.execute();
        }
    

    运行结果:

    image-20210902104631485

    reduce聚合

    KeyedStream → DataStream:一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。

    需求:取最大温度值以及当前最新的时间戳

        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
            DataStream<String> inputStream = env.readTextFile("D:\project\flink-demo\src\main\resources\sensor.txt");
            DataStream<SensorReading> mapStream = inputStream.map((str) -> {
                String[] split = str.split(" ");
                return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[2]));
            });
    
            KeyedStream<SensorReading, Tuple> keyedStream = mapStream.keyBy("id");
    
            keyedStream.reduce((v1, v2) -> new SensorReading(v1.getId(), v2.getTimestamp(), Math.max(v1.getTemperature(), v2.getTemperature())))
                    .print();
    
            env.execute();
        }
    

    image-20210902105910061

    分流:Split 和 Select

    Split:

    image-20210902110045760

    DataStream → SplitStream:根据某些特征把一个 DataStream 拆分成两个或者多个 DataStream。

    Select:

    image-20210902110112987

    SplitStream→DataStream:从一个 SplitStream 中获取一个或者多个 DataStream。

    需求:传感器数据按照温度高低(以 30 度为界),拆分成两个流,并取出高温的数据。

            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
            DataStream<String> inputStream = env.readTextFile("D:\project\flink-demo\src\main\resources\sensor.txt");
            DataStream<SensorReading> mapStream = inputStream.map((str) -> {
                String[] split = str.split(" ");
                return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[2]));
            });
    
            SplitStream<SensorReading> splitStream = mapStream.split((value -> value.getTemperature() > 30 ? Collections.singletonList("high") : Collections.singletonList("low")));
            splitStream.select("high").print();
            env.execute();
    

    image-20210902111337743

    合流:Connect和CoMap

    Connect:

    image-20210902111553896

    DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数据流,两个数据流被 Connect 之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。

    CoMap,CoFlatMap:

    image-20210902111655997

    ConnectedStreams → DataStream:作用于 ConnectedStreams 上,功能与 map 和 flatMap 一样,对 ConnectedStreams 中的每一个 Stream 分别进行 map 和 flatMap 处理。

    测试代码:

    		//前面代码与上面分流代码一样        
    		SplitStream<SensorReading> splitStream = mapStream.split((value -> value.getTemperature() > 30 ? Collections.singletonList("high") : Collections.singletonList("low")));
            DataStream<SensorReading> highStream = splitStream.select("high");
            DataStream<SensorReading> lowStream = splitStream.select("low");
            DataStream<SensorReading> allStream = splitStream.select("high", "low");
    
            //合流
            //先将高温六转换成二元组类型,与低温流连接合并之后,输出状态信息
            DataStream<Tuple2<String, Double>> warningStream = highStream.map(new MapFunction<SensorReading, Tuple2<String, Double>>() {
                @Override
                public Tuple2<String, Double> map(SensorReading value) throws Exception {
                    return new Tuple2<>(value.getId(), value.getTemperature());
                }
            });
            //连接两个流
            ConnectedStreams<Tuple2<String, Double>, SensorReading> connectedStreams
                    = warningStream.connect(lowStream);
    
            SingleOutputStreamOperator<Object> resultStream = connectedStreams.map(new CoMapFunction<Tuple2<String, Double>, SensorReading, Object>() {
                @Override
                public Object map1(Tuple2<String, Double> value) throws Exception {
                    return new Tuple3<>(value.f0, value.f1, "warning");
                }
    
                @Override
                public Object map2(SensorReading value) throws Exception {
                    return new Tuple2<>(value.getId(), "normal");
                }
            });
    
            resultStream.print();
    
            env.execute();
    

    image-20210902135656336

    union合流

    union:

    image-20210902135748677

    DataStream → DataStream:对两个或者两个以上的 DataStream 进行 union 操作,产生一个包含所有 DataStream 元素的新 DataStream。

    1. Union 之前两个流的类型必须是一样,Connect 可以不一样,在之后的 coMap 中再去调整成为一样的。

    2. Connect 只能操作两个流,Union 可以操作多个。

            DataStream<SensorReading> unionStream = highStream.union(lowStream);
            unionStream.print();
    

    image-20210902140109860

    富函数(Rich Functions)

    “富函数”是 DataStream API 提供的一个函数类的接口,所有 Flink 函数类都 有其 Rich 版本。它与常规函数的不同在于,可以获取运行环境的上下文,并拥有一些生命周期方法,所以可以实现更复杂的功能。

    • RichMapFunction
    • RichFlatMapFunction
    • RichFilterFunction
    • ...

    Rich Function 有一个生命周期的概念。典型的生命周期方法有:

    • open()方法是 rich function 的初始化方法,当一个算子例如 map 或者 filter 被调用之前 open()会被调用。
    • close()方法是生命周期中的最后一个调用的方法,做一些清理工作。
    • getRuntimeContext()方法提供了函数的 RuntimeContext 的一些信息,例如函数执行的并行度,任务的名字,以及 state 状态

    测试:

        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(4);
            DataStream<String> inputStream = env.readTextFile("D:\project\flink-demo\src\main\resources\sensor.txt");
            DataStream<SensorReading> mapStream = inputStream.map((str) -> {
                String[] split = str.split(" ");
                return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[2]));
            });
    
            DataStream<Tuple2<String, Integer>> resultStream = mapStream.map(new MyMapper());
    
            resultStream.print();
            env.execute();
    
        }
    
        // 实现自定义富函数类
        public static class MyMapper extends RichMapFunction<SensorReading, Tuple2<String, Integer>>{
            @Override
            public Tuple2<String, Integer> map(SensorReading value) throws Exception {
    //            getRuntimeContext().getState();
                return new Tuple2<>(value.getId(), getRuntimeContext().getIndexOfThisSubtask());
            }
    
            @Override
            public void open(Configuration parameters) throws Exception {
                // 初始化工作,一般是定义状态,或者建立数据库连接
                System.out.println("open");
            }
    
            @Override
            public void close() throws Exception {
                // 一般是关闭连接和清空状态的收尾操作
                System.out.println("close");
            }
        }
    

    image-20210902143915610

    sink

    Flink 没有类似于 spark 中 foreach 方法,让用户进行迭代的操作。虽有对外的输出操作都要利用 Sink 完成。最后通过类似如下方式完成整个任务最终输出操作。

    stream.addSink(new MySink(xxxx)) 
    

    官方提供了一部分的框架的 sink。除此以外,需要用户自定义实现 sink。

    image-20210902145116151

    Kafka

    代码测试:

            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(4);
            DataStream<String> inputStream = env.readTextFile("D:\project\flink-demo\src\main\resources\sensor.txt");
            DataStream<String> mapStream = inputStream.map((str) -> {
                String[] split = str.split(" ");
                return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[2])).toString();
            });
    
            mapStream.addSink(new FlinkKafkaProducer011<>("192.168.1.77:9092", "sinktest", new SimpleStringSchema()));
            env.execute();
    

    kafka消费者:

    ./bin/kafka-console-consumer.sh --bootstrap-server 192.168.1.77:9092 --topic sinktest
    

    效果:

    动画

    Redis

    添加依赖:

    <dependency>
         <groupId>org.apache.bahir</groupId>
         <artifactId>flink-connector-redis_2.11</artifactId>
         <version>1.0</version>
    </dependency>
    

    代码:

        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
            DataStream<String> inputStream = env.readTextFile("D:\project\flink-demo\src\main\resources\sensor.txt");
    
            DataStream<SensorReading> mapStream = inputStream.map((str) -> {
                String[] split = str.split(" ");
                return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[2]));
            });
    
            FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder()
                    .setHost("192.168.1.77")
                    .setPort(6379).build();
            mapStream.addSink(new RedisSink<>(config, new MyRedisMapper()));
            env.execute();
        }
    
        public static class MyRedisMapper implements RedisMapper<SensorReading> {
    
            //返回redis操作信息
            @Override
            public RedisCommandDescription getCommandDescription() {
                return new RedisCommandDescription(RedisCommand.HSET, "sensor");
            }
    
            @Override
            public String getKeyFromData(SensorReading data) {
                return data.getId();
            }
    
            @Override
            public String getValueFromData(SensorReading data) {
                return data.getTemperature().toString();
            }
        }
    

    运行结果:

    image-20210902155401103

    ElasticSearch

    导入依赖:

            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-connector-elasticsearch6_2.12</artifactId>
                <version>1.10.1</version>
            </dependency>
    

    代码:

        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
            DataStream<String> inputStream = env.readTextFile("D:\project\flink-demo\src\main\resources\sensor.txt");
    
            DataStream<SensorReading> mapStream = inputStream.map((str) -> {
                String[] split = str.split(" ");
                return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[2]));
            });
    
            List<HttpHost> httpHosts = Collections.singletonList(new HttpHost("192.168.1.77", 9200));
            ElasticsearchSink<SensorReading> elasticsearchSink = new ElasticsearchSink.Builder<SensorReading>(httpHosts, new MyEsSinkFunction()).build();
    
            mapStream.addSink(elasticsearchSink);
    
            env.execute();
        }
    
        public static class MyEsSinkFunction implements ElasticsearchSinkFunction<SensorReading> {
    
            @Override
            public void process(SensorReading element, RuntimeContext ctx, RequestIndexer indexer) {
                //定义写入的数据source
                HashMap<String, String> dataSource = new HashMap<>();
                dataSource.put("id", element.getId());
                dataSource.put("temp", element.getTemperature().toString());
                dataSource.put("timestamp", element.getTimestamp().toString());
    
                //创建请求,作为向es发起的写入命令
                IndexRequest indexRequest = Requests.indexRequest().index("sensors")
                        .type("sensors").source(dataSource);
                //发送请求
                indexer.add(indexRequest);
            }
        }
    

    访问:http://192.168.1.77:9200/sensors/_search?pretty

    image-20210902161115466

    可见数据以及输出到ElasticSearch中去了

    Mysql

    添加依赖:

    <dependency>
         <groupId>mysql</groupId>
         <artifactId>mysql-connector-java</artifactId>
         <version>5.1.44</version>
    </dependency>
    

    表sql:

    DROP TABLE IF EXISTS `sensor_temp`;
    CREATE TABLE `sensor_temp`  (
      `id` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
      `temp` double NOT NULL,
      PRIMARY KEY (`id`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
    SET FOREIGN_KEY_CHECKS = 1;
    

    java代码:

        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
            DataStream<String> inputStream = env.readTextFile("D:\project\flink-demo\src\main\resources\sensor.txt");
    
            DataStream<SensorReading> mapStream = inputStream.map((str) -> {
                String[] split = str.split(" ");
                return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[2]));
            });
            mapStream.addSink(new MysqlRichSinkFunction());
            env.execute();
        }
    
        public static class MysqlRichSinkFunction extends RichSinkFunction<SensorReading> {
    
            Connection conn = null;
            PreparedStatement insertStmt = null;
            PreparedStatement updateStmt = null;
    
            // open 主要是创建连接
            @Override
            public void open(Configuration parameters) throws Exception {
                conn = DriverManager.getConnection("jdbc:mysql://192.168.1.77:3306/sensor", "root", "1234");
                // 创建预编译器,有占位符,可传入参数
                insertStmt = conn.prepareStatement("INSERT INTO sensor_temp (id, temp) VALUES (?, ?)");
                updateStmt = conn.prepareStatement("UPDATE sensor_temp SET temp = ? WHERE id  = ?");
            }
    
            @Override
            public void invoke(SensorReading value, Context context) throws Exception {
                // 执行更新语句,注意不要留 super
                updateStmt.setDouble(1, value.getTemperature());
                updateStmt.setString(2, value.getId());
                updateStmt.execute();
                // 如果刚才 update 语句没有更新,那么插入
                if (updateStmt.getUpdateCount() == 0) {
                    insertStmt.setString(1, value.getId());
                    insertStmt.setDouble(2, value.getTemperature());
                    insertStmt.execute();
                }
            }
    
            @Override
            public void close() throws Exception {
                insertStmt.close();
                updateStmt.close();
                conn.close();
            }
    
        }
    

    运行结果:

    image-20210902163124301

  • 相关阅读:
    新建winform项目,在其中拖入2个button和1个 PictureBox,1Openfiledialog用Graphics\pen\brush\color\Font\的属性画出不同图案 .
    在TSQl中使用变量,事务,系统存储,自定义存储
    在网页中使用.ascx用户控件的两种方法 .
    母版页label值在内容页label中显示 .
    在网页上显示用户控件上学选择的内容(例子省市选择器) .
    WebConfig常用配置文件
    #网页中动态嵌入PDF文件/在线预览PDF内容#
    海盗分宝石逻辑题目
    骆驼吃香蕉问题
    JDeveloper中安装junit扩展
  • 原文地址:https://www.cnblogs.com/wwjj4811/p/15219415.html
Copyright © 2020-2023  润新知