• 人脸识别脸部标志、表情、年龄/性别


    from openvino.inference_engine import IECore
    import numpy as np
    import time
    import cv2 as cv
    
    emotions = ['neutral', 'happy', 'sad', 'surprise', 'anger']
    genders = ['female', 'male']
    
    
    def face_landmark_demo():
        ie = IECore()
        for device in ie.available_devices:
            print(device)
    
        model_xml = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.xml"
        model_bin = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.bin"
    
        net = ie.read_network(model=model_xml, weights=model_bin)
        input_blob = next(iter(net.input_info))
        out_blob = next(iter(net.outputs))
    
        n, c, h, w = net.input_info[input_blob].input_data.shape                                        #人脸识别模型输入(1,3,256,256)
        print(n, c, h, w)
    
        cap = cv.VideoCapture("1.mp4")
        exec_net = ie.load_network(network=net, device_name="CPU")
    
        # 加载人脸表情识别模型
        em_xml = "/home/bhc/BHC/model/intel/facial-landmarks-35-adas-0002/FP16/facial-landmarks-35-adas-0002.xml"
        em_bin = "/home/bhc/BHC/model/intel/facial-landmarks-35-adas-0002/FP16/facial-landmarks-35-adas-0002.bin"
    
        em_net = ie.read_network(model=em_xml, weights=em_bin)
        em_input_blob = next(iter(em_net.input_info))
        em_out_blob = next(iter(em_net.outputs))
        en, ec, eh, ew = em_net.input_info[em_input_blob].input_data.shape                              #人脸标志模型输入(1,3,60,60)
        print(en, ec, eh, ew)
    
        em_exec_net = ie.load_network(network=em_net, device_name="CPU")
    
        while True:
            ret, frame = cap.read()
            if ret is not True:
                break
            image = cv.resize(frame, (w, h))
            image = image.transpose(2, 0, 1)
            inf_start = time.time()
            res = exec_net.infer(inputs={input_blob: [image]})
            inf_end = time.time() - inf_start
            # print("infer time(ms):%.3f"%(inf_end*1000))
            ih, iw, ic = frame.shape
            res = res[out_blob]                                                                         #人脸识别模型输出(1, 1, N, 7)
            for obj in res[0][0]:
                if obj[2] > 0.75:                                                                       #[image_id, label, conf, x_min, y_min, x_max, y_max],
                    xmin = int(obj[3] * iw)
                    ymin = int(obj[4] * ih)
                    xmax = int(obj[5] * iw)
                    ymax = int(obj[6] * ih)
                    if xmin < 0:
                        xmin = 0
                    if ymin < 0:
                        ymin = 0
                    if xmax >= iw:
                        xmax = iw - 1
                    if ymax >= ih:
                        ymax = ih - 1
                    roi = frame[ymin:ymax, xmin:xmax, :]                                                 #人脸识别模出的人脸数据,作为人脸标志模型的输入
                    rh, rw, rc = roi.shape
                    roi_img = cv.resize(roi, (ew, eh))
                    roi_img = roi_img.transpose(2, 0, 1)
                    em_res = em_exec_net.infer(inputs={em_input_blob: [roi_img]})
                    prob_landmarks = em_res[em_out_blob]                                                #人脸标志模型输出(1, 70)
                    for index in range(0, len(prob_landmarks[0]), 2):                                   #(x0, y0, x1, y1, …, x34, y34)
                        x = np.int(prob_landmarks[0][index] * rw)
                        y = np.int(prob_landmarks[0][index+1] * rh)
                        cv.circle(roi, (x, y), 3, (0, 0, 255), -1, 8, 0)
                    cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 2, 8)
                    cv.putText(frame, "infer time(ms): %.3f" % (inf_end * 1000), (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0,
                               (255, 0, 255),
                               2, 8)
            cv.imshow("Face+emotion Detection", frame)
            c = cv.waitKey(1)
            if c == 27:
                break
        cv.waitKey(0)
        cv.destroyAllWindows()
    
    
    def face_emotion_demo():
        ie = IECore()
        for device in ie.available_devices:
            print(device)
    
        model_xml = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.xml"
        model_bin = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.bin"
    
        net = ie.read_network(model=model_xml, weights=model_bin)
        input_blob = next(iter(net.input_info))
        out_blob = next(iter(net.outputs))
    
        n, c, h, w = net.input_info[input_blob].input_data.shape
        print(n, c, h, w)
    
        cap = cv.VideoCapture("1.mp4")
        exec_net = ie.load_network(network=net, device_name="CPU")
    
        # 加载人脸表情识别模型
        em_xml = "/home/bhc/BHC/model/intel/emotions-recognition-retail-0003/FP16/emotions-recognition-retail-0003.xml"
        em_bin = "/home/bhc/BHC/model/intel/emotions-recognition-retail-0003/FP16/emotions-recognition-retail-0003.bin"
    
        em_net = ie.read_network(model=em_xml, weights=em_bin)
    
        em_input_blob = next(iter(em_net.input_info))
        em_out_blob = next(iter(em_net.outputs))
        en, ec, eh, ew = em_net.input_info[em_input_blob].input_data.shape
        print(en, ec, eh, ew)
    
        em_exec_net = ie.load_network(network=em_net, device_name="CPU")
    
        while True:
            ret, frame = cap.read()
            if ret is not True:
                break
            image = cv.resize(frame, (w, h))
            image = image.transpose(2, 0, 1)
            inf_start = time.time()
            res = exec_net.infer(inputs={input_blob: [image]})
            inf_end = time.time() - inf_start
            # print("infer time(ms):%.3f"%(inf_end*1000))
            ih, iw, ic = frame.shape
            res = res[out_blob]
            for obj in res[0][0]:
                if obj[2] > 0.75:
                    xmin = int(obj[3] * iw)
                    ymin = int(obj[4] * ih)
                    xmax = int(obj[5] * iw)
                    ymax = int(obj[6] * ih)
                    if xmin < 0:
                        xmin = 0
                    if ymin < 0:
                        ymin = 0
                    if xmax >= iw:
                        xmax = iw - 1
                    if ymax >= ih:
                        ymax = ih - 1
                    roi = frame[ymin:ymax, xmin:xmax, :]
                    roi_img = cv.resize(roi, (ew, eh))
                    roi_img = roi_img.transpose(2, 0, 1)
                    em_res = em_exec_net.infer(inputs={em_input_blob: [roi_img]})                                           #人脸表情模型输出(1, 5, 1, 1)
                    prob_emotion = em_res[em_out_blob].reshape(1, 5)                                                        
                    label_index = np.argmax(prob_emotion, 1)                                                                #(0 - ‘neutral’, 1 - ‘happy’, 2 - ‘sad’, 3 - ‘surprise’, 4 - ‘anger’).
                    cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 2, 8)
                    cv.putText(frame, "infer time(ms): %.3f" % (inf_end * 1000), (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0,
                               (255, 0, 255),
                               2, 8)
                    cv.putText(frame, emotions[np.int(label_index)], (xmin, ymin), cv.FONT_HERSHEY_SIMPLEX, 0.55,
                               (0, 0, 255),
                               2, 8)
            cv.imshow("Face+emotion Detection", frame)
            c = cv.waitKey(1)
            if c == 27:
                break
        cv.waitKey(0)
        cv.destroyAllWindows()
    
    
    def face_age_gender_demo():
        ie = IECore()
        for device in ie.available_devices:
            print(device)
    
        model_xml = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.xml"
        model_bin = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.bin"
    
        net = ie.read_network(model=model_xml, weights=model_bin)
        input_blob = next(iter(net.input_info))
        out_blob = next(iter(net.outputs))
    
        n, c, h, w = net.input_info[input_blob].input_data.shape
        print(n, c, h, w)
    
        cap = cv.VideoCapture("1.mp4")
        exec_net = ie.load_network(network=net, device_name="CPU")
    
        # 加载年龄性别模型
        em_xml = "/home/bhc/BHC/model/intel/age-gender-recognition-retail-0013/FP16/age-gender-recognition-retail-0013.xml"
        em_bin = "/home/bhc/BHC/model/intel/age-gender-recognition-retail-0013/FP16/age-gender-recognition-retail-0013.bin"
    
        em_net = ie.read_network(model=em_xml, weights=em_bin)
        em_input_blob = next(iter(em_net.input_info))
        em_it = iter(em_net.outputs)
        em_out_blob1 = next(em_it)
        em_out_blob2 = next(em_it)
        en, ec, eh, ew = em_net.input_info[em_input_blob].input_data.shape
        print(en, ec, eh, ew)
    
        em_exec_net = ie.load_network(network=em_net, device_name="CPU")
    
        while True:
            ret, frame = cap.read()
            if ret is not True:
                break
            image = cv.resize(frame, (w, h))
            image = image.transpose(2, 0, 1)
            inf_start = time.time()
            res = exec_net.infer(inputs={input_blob:[image]})
            inf_end = time.time() - inf_start
            # print("infer time(ms):%.3f"%(inf_end*1000))
            ih, iw, ic = frame.shape
            res = res[out_blob]
            for obj in res[0][0]:
                if obj[2] > 0.75:
                    xmin = int(obj[3] * iw)
                    ymin = int(obj[4] * ih)
                    xmax = int(obj[5] * iw)
                    ymax = int(obj[6] * ih)
                    if xmin < 0:
                        xmin = 0
                    if ymin < 0:
                        ymin = 0
                    if xmax >= iw:
                        xmax = iw - 1
                    if ymax >= ih:
                        ymax = ih - 1
                    roi = frame[ymin:ymax,xmin:xmax,:]
                    roi_img = cv.resize(roi, (ew, eh))
                    roi_img = roi_img.transpose(2, 0, 1)
                    em_res = em_exec_net.infer(inputs={em_input_blob: [roi_img]})
                    age_conv3 = em_res[em_out_blob1].reshape(1, 1)[0][0] * 100                          #age_conv3 (1, 1, 1, 1) age*100
                    prob_age = em_res[em_out_blob2].reshape(1, 2)                                       #prob (1, 2, 1, 1)    0 - female, 1 - male
                    label_index = np.int(np.argmax(prob_age, 1))
                    age = np.int(age_conv3)
                    cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 2, 8)
                    cv.putText(frame, "infer time(ms): %.3f"%(inf_end*1000), (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 255),
                               2, 8)
                    cv.putText(frame, genders[label_index] + ', ' +str(age), (xmin, ymin), cv.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255),
                              2, 8)
            cv.imshow("Face+emotion Detection", frame)
            c = cv.waitKey(1)
            if c == 27:
                break
        cv.waitKey(0)
        cv.destroyAllWindows()
    
    
    if __name__ == "__main__":
        face_landmark_demo()
        # face_emotion_demo()
        # face_age_gender_demo()
    
  • 相关阅读:
    ASM实例远程连接
    ASM实例修改SYS密码
    监听lsnrctl status查询状态报错linux error 111:connection refused
    使用UTF8字符集存储中文生僻字
    Eclipse的概述
    java内部类
    Java----main
    移动客户端系统升级思路
    网站 压力测试。。检测 cdn 路由追踪 网速测试
    php实现树状结构无级分类
  • 原文地址:https://www.cnblogs.com/wuyuan2011woaini/p/15934591.html
Copyright © 2020-2023  润新知