• OpenCV轮廓检测,计算物体旋转角度


    效果还是有点问题的,希望大家共同探讨一下

    // FindRotation-angle.cpp : 定义控制台应用程序的入口点。
    //
    
    // findContours.cpp : 定义控制台应用程序的入口点。
    //
    
    #include "stdafx.h"
    
    
    
    #include <iostream>
    #include <vector>
    #include <opencv2/opencv.hpp> 
    #include <opencv2/core/core.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <opencv2/highgui/highgui.hpp>
    
    
    #pragma comment(lib,"opencv_core2410d.lib")      
    #pragma comment(lib,"opencv_highgui2410d.lib")      
    #pragma comment(lib,"opencv_imgproc2410d.lib") 
    
    #define PI 3.1415926
    
    using namespace std;
    using namespace cv;
    
    
    
    int hough_line(Mat src)
    {
    	//【1】载入原始图和Mat变量定义   
    	Mat srcImage = src;//imread("1.jpg");  //工程目录下应该有一张名为1.jpg的素材图
    	Mat midImage,dstImage;//临时变量和目标图的定义
    
    	//【2】进行边缘检测和转化为灰度图
    	Canny(srcImage, midImage, 50, 200, 3);//进行一此canny边缘检测
    	cvtColor(midImage,dstImage, CV_GRAY2BGR);//转化边缘检测后的图为灰度图
    
    	//【3】进行霍夫线变换
    	vector<Vec4i> lines;//定义一个矢量结构lines用于存放得到的线段矢量集合
    	HoughLinesP(midImage, lines, 1, CV_PI/180, 80, 50, 10 );
    
    	//【4】依次在图中绘制出每条线段
    	for( size_t i = 0; i < lines.size(); i++ )
    	{
    		Vec4i l = lines[i];
    		line( dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(186,88,255), 1, CV_AA);
    	}
    
    	//【5】显示原始图  
    	imshow("【原始图】", srcImage);  
    
    	//【6】边缘检测后的图 
    	imshow("【边缘检测后的图】", midImage);  
    
    	//【7】显示效果图  
    	imshow("【效果图】", dstImage);  
    
    	//waitKey(0);  
    
    	return 0;  
    }
    
    int main()
    {
    	// Read input binary image
    
    	char *image_name = "test.jpg";
    	cv::Mat image = cv::imread(image_name,0);
    	if (!image.data)
    		return 0; 
    
    	cv::namedWindow("Binary Image");
    	cv::imshow("Binary Image",image);
    
    
    	
    	// 从文件中加载原图  
    	   IplImage *pSrcImage = cvLoadImage(image_name, CV_LOAD_IMAGE_UNCHANGED);  
    	  
    		   // 转为2值图
    		
    	 cvThreshold(pSrcImage,pSrcImage,200,255,cv::THRESH_BINARY_INV);
    		   
    	
    	   image = cv::Mat(pSrcImage,true);
    
    	   cv::imwrite("binary.jpg",image);
    
    	// Get the contours of the connected components
    	std::vector<std::vector<cv::Point>> contours;
    	cv::findContours(image, 
    		contours, // a vector of contours 
    		CV_RETR_EXTERNAL, // retrieve the external contours
    		CV_CHAIN_APPROX_NONE); // retrieve all pixels of each contours
    
    	// Print contours' length
    	std::cout << "Contours: " << contours.size() << std::endl;
    	std::vector<std::vector<cv::Point>>::const_iterator itContours= contours.begin();
    	for ( ; itContours!=contours.end(); ++itContours) 
    	{
    
    		std::cout << "Size: " << itContours->size() << std::endl;
    	}
    
    	// draw black contours on white image
    	cv::Mat result(image.size(),CV_8U,cv::Scalar(255));
    	cv::drawContours(result,contours,
    		-1, // draw all contours
    		cv::Scalar(0), // in black
    		2); // with a thickness of 2
    
    	cv::namedWindow("Contours");
    	cv::imshow("Contours",result);
    
    
    
    
    
    
    	// Eliminate too short or too long contours
    	int cmin= 100;  // minimum contour length
    	int cmax= 1000; // maximum contour length
    	std::vector<std::vector<cv::Point>>::const_iterator itc= contours.begin();
    	while (itc!=contours.end()) {
    
    		if (itc->size() < cmin || itc->size() > cmax)
    			itc= contours.erase(itc);
    		else 
    			++itc;
    	}
    
    	// draw contours on the original image
    	cv::Mat original= cv::imread(image_name);
    	cv::drawContours(original,contours,
    		-1, // draw all contours
    		cv::Scalar(255,255,0), // in white
    		2); // with a thickness of 2
    
    	cv::namedWindow("Contours on original");
    	cv::imshow("Contours on original",original);
    
    	
    
    	// Let's now draw black contours on white image
    	result.setTo(cv::Scalar(255));
    	cv::drawContours(result,contours,
    		-1, // draw all contours
    		cv::Scalar(0), // in black
    		1); // with a thickness of 1
    	image= cv::imread("binary.jpg",0);
    
    	//imshow("lll",result);
    	//waitKey(0);
    
    	// testing the bounding box 
    	//////////////////////////////////////////////////////////////////////////////
    	//霍夫变换进行直线检测,此处使用的是probabilistic Hough transform(cv::HoughLinesP)而不是standard Hough transform(cv::HoughLines)
    
    	cv::Mat result_line(image.size(),CV_8U,cv::Scalar(255));
    	result_line = result.clone();
    
    	hough_line(result_line);
    
    	//Mat tempimage;
    
    	//【2】进行边缘检测和转化为灰度图
    	//Canny(result_line, tempimage, 50, 200, 3);//进行一此canny边缘检测
    	//imshow("canny",tempimage);
    	//waitKey(0);
    
    	//cvtColor(tempimage,result_line, CV_GRAY2BGR);//转化边缘检测后的图为灰度图
    	vector<Vec4i> lines;
    
    	cv::HoughLinesP(result_line,lines,1,CV_PI/180,80,50,10);
    
    	for(int i = 0; i < lines.size(); i++)
    	{
    		line(result_line,cv::Point(lines[i][0],lines[i][1]),cv::Point(lines[i][2],lines[i][3]),Scalar(0,0,0),2,8,0);
    	}
    	cv::namedWindow("line");
    	cv::imshow("line",result_line);
    	//waitKey(0);
    
    	/////////////////////////////////////////////////////////////////////////////////////////////
    	//
    
    	//std::vector<std::vector<cv::Point>>::const_iterator itc_rec= contours.begin();
    	//while (itc_rec!=contours.end())
    	//{
    	//	cv::Rect r0= cv::boundingRect(cv::Mat(*(itc_rec)));
    	//	cv::rectangle(result,r0,cv::Scalar(0),2);
    	//		++itc_rec;
    	//}
    
    	
    
    	//cv::namedWindow("Some Shape descriptors");
    	//cv::imshow("Some Shape descriptors",result);
    
    
    	CvBox2D     End_Rage2D;
    	CvPoint2D32f rectpoint[4];
    	CvMemStorage *storage = cvCreateMemStorage(0);  //开辟内存空间
    
    
    	CvSeq*      contour = NULL;     //CvSeq类型 存放检测到的图像轮廓边缘所有的像素值,坐标值特征的结构体以链表形式
    
    	cvFindContours( pSrcImage, storage, &contour, sizeof(CvContour),CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE);//这函数可选参数还有不少
    
    
    
    	for(; contour; contour = contour->h_next)   //如果contour不为空,表示找到一个以上轮廓,这样写法只显示一个轮廓
    		//如改为for(; contour; contour = contour->h_next) 就可以同时显示多个轮廓
    	{  
    
    		End_Rage2D = cvMinAreaRect2(contour);  
    		//代入cvMinAreaRect2这个函数得到最小包围矩形  这里已得出被测物体的角度,宽度,高度,和中点坐标点存放在CvBox2D类型的结构体中,
    		//主要工作基本结束。
    		for(int i = 0;i< 4;i++)
    		{
    			  //CvArr* s=(CvArr*)&result;
    			//cvLine(s,cvPointFrom32f(rectpoint[i]),cvPointFrom32f(rectpoint[(i+1)%4]),CV_G(0,0,255),2);
    			line(result,cvPointFrom32f(rectpoint[i]),cvPointFrom32f(rectpoint[(i+1)%4]),Scalar(125),2);
    		} 
    		cvBoxPoints(End_Rage2D,rectpoint);
    	
    	std::cout <<" angle:
    "<<(float)End_Rage2D.angle << std::endl;      //被测物体旋转角度 
    	
    	}
    	cv::imshow("lalalal",result);
    	cv::waitKey();
    	return 0;
    
    
    }


     

    这个是原来实现的代码的博客文章:

    http://blog.csdn.net/wangyaninglm/article/details/41864251

    参考文献:

    http://blog.csdn.net/z397164725/article/details/7248096

    http://blog.csdn.net/fdl19881/article/details/6730112

    http://blog.csdn.net/mine1024/article/details/6044856

  • 相关阅读:
    win10+anaconda+cuda配置dlib,使用GPU对dlib的深度学习算法进行加速(以人脸检测为例)
    Windows下的Anaconda+OpenCV的环境配置
    视频检测人脸添加帽子完美方案
    OpenCV学习C++接口 Mat像素遍历详解
    [hadoop读书笔记] 第一章 初识 Hadoop
    [hadoop读书笔记]前言
    [hadoop读书笔记]译者序
    [Docker] Docker简介
    [sqoop1.99.6] 基于1.99.6版本的一个小例子
    [sqoop1.99.7] sqoop实例——数据ETL
  • 原文地址:https://www.cnblogs.com/wuyida/p/6301375.html
Copyright © 2020-2023  润新知