• 笔试题:硬币划分


    硬币划分

    问题描述:

    有1分,2分,5分,10分四种硬币,每种硬币数量无限,给定n分钱(n <= 100000),有多少中组合可以组成n分钱?

    思路分析:

    1. 穷举法
    int countWays(int n) {
        int count = 1;          // 全用1分的情况
        for(int a1 = 0; a1 < n/10; a1++) {
            int b1 = 10 * a1;
            for(int a2 = 0; a2 <= n/5; a2++) {
                int b2 = 5* a2;
                for(int a3=0; a3<=n/2; a3++) {
                    count++;
                }
            }
        }
        return count;
    }
    
    1. 动态规划

    我们假设用m种纸币构成sum分:(sum = x_1*V_1 + x_2*V2 + ... + x_m*V_m)
    (V_m)的系数的取值可分为 (lbrace0, 1, 2, ..., sum/V_m brace)

    [sum = x_1*V_1 + x_2*V2 + ... + (0|1|2|3...|K)*V_m ]

    [K = sum/V_m ]

    定义dp[i][sum] = 用前i种硬币构成sum的所有集合数

    (x_m=0) 时,实际上就是前i-1种纸币组合sum,有dp[i-1][sum]种组合,所以:

    [dp[i][sum] = dp[i-1][sum-0*V_m] + dp[i-1][sum-1*V_m] + ... + dp[i-1][sum-K*V_m] ]

    [K = sum/V_m ]

    对应的数学描述是:

    [dp[i][sum] = sum_{k=0}^{sum/V_m} dp[i-1][sum-K*V_m] ]

    如果我们用二位数组表示dp[i][sum], 我们发现第i行的值全部依赖与i-1行的值,所以我们可以逐行求解该数组。如果前0种纸币要组成sum:dp[0][sum] = 0

    int countWays(int n){
        int money[] = {1, 2, 5, 10};
        int dp[] = new int[n+1];
        dp[0] = 0;
        for(int i = 0; i < money.len; i++){
            for(int j = 0; j <= n; j++){
                dp[j] = dp[j] + dp[j - dp[i]];
            }
        }
        return dp[n];
    }
    
  • 相关阅读:
    如何将CentOS的默认启动界面修改为图形界面or字符界面
    如何将CentOS的默认启动界面修改为图形界面or字符界面
    virtualbox下CentOS7安装增强功能
    蓝牙4.0
    HC-SR04超声波测距
    STM32F407 通用同步异步收发器(串口)
    STM32F4 TIM(外设定时器)
    STM32F4 系统定时器
    STM32F4 异常与中断
    LED和按键实验
  • 原文地址:https://www.cnblogs.com/wuxie0ne/p/11603807.html
Copyright © 2020-2023  润新知