• 阿里妈妈MLR模型(论文)


    论文来源:https://arxiv.org/abs/1704.05194v1

    阿里技术:https://mp.weixin.qq.com/s/MtnHYmPVoDAid9SNHnlzUw?scene=25#wechat_redirect

    写在前面的观后感:该篇论文是阿里妈妈提出来的MLR模型,总体感觉不到什么新意啊,也就是分段线性+级连(级连的部分貌似那篇论文没有说,阿里技术那里面说了)

    貌似理论上百度凤巢的ctr比较牛吧,看网上说是lr,gbdt,fm,dnn一起“乱搞”,腾讯我实习的部门貌似现在还是LR+gbdt,其实我在的时候它们还只是分开试验,LR+gbdt都没有做

    Introduction

    LR模型不能处理非线性特征,所以需要特征工程去加入非线性特征

    基于树的模型虽然能够引入非线性特征,但是不适合非常稀疏高纬度的特征

    FM模型虽然能够解决高维稀疏且非线性的问题,但是FM不能适应所以的非线性模式(如更高纬度的)

    采用分而治之的思想,首先将特征分成几个区域,然后在每个区域里面添加一个线性模型:

    Large Scale Piecewise Linear Model (LS-PLM). LS-PLM follows the divide-and-conquer strategy, that is, first divides the feature space into several local regions, then fits a linear model in each region, 

    LS_PLM算法的优点:

    • 非线性 :分成足够的区域,能够拟合任何复杂的非线性函数

    • 可扩展性:分布式训练,能够处理高维大数据
    • 稀疏性:LS_PLM在L1,L2正则下能够达到很好的稀疏性

    LS_PLM是一个非凸不可微的优化问题,该论文采用了直接求导和quis_newton方法求解

    给了这张图,来说明LS_PLM模型能够捕捉数据非线性分布(话说LR引入非线性核函数也是可以解决的啊,卧槽

     

     Method

    模型公式:

    g是最后用于求概率的函数,分成两部分:一、delta是分成到不同region的函数  二、eta是线性模型函数

    假设g(x)=x,一是softmax,eta是sigmoid,那么上面的式子就可以变成

    进一步

    损失函数加上正则化后也就可以定义为:

     后面的优化就不说了

     试验结果:

  • 相关阅读:
    jar包和war包的介绍和区别
    java中getAttribute和getParameter的区别
    修改tomcat默认的编码方式
    jQuery遮罩插件jQuery.blockUI.js简介
    Sql Server 2008 Management studio安装教程
    评论字数限制和字数显示
    如何将表单元素封装
    DWR原理探秘
    linux命令详解:pgrep命令
    使用Nginx实现灰度发布
  • 原文地址:https://www.cnblogs.com/wuxiangli/p/7260303.html
Copyright © 2020-2023  润新知