A Very Simple Problem |
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 88 Accepted Submission(s): 55 |
Problem Description
This is a very simple problem. Given three integers N, x, and M, your task is to calculate out the following value:
|
Input
There are several test cases. For each case, there is a line with three integers N, x, and M, where 1 ≤ N, M ≤ 2*109, and 1 ≤ x ≤ 50.
The input ends up with three negative numbers, which should not be processed as a case. |
Output
For each test case, print a line with an integer indicating the result. |
Sample Input
100 1 10000 3 4 1000 -1 -1 -1 |
Sample Output
5050 444 |
Source
2010 ACM-ICPC Multi-University Training Contest(5)——Host by BJTU
|
Recommend
zhengfeng
|
/* 题意:给你n,x,m,让你求1^x*x^1+2^x*x^2+...+n^x*x^n; 初步思路:刚开始一点思路也没有,看了题解才发现妙处。 #补充:设F[n]=x^n,n*(x^n),(n^2)*(x^n),...,(n^x)*(x^n); 得到: F[n][k]=(n^k)*(x^n); 则要求的结果为: G[n]=F[1][k]+F[2][k]+...+F[n][k]; 设C(i,j)为组合数,即i种元素取j种的方法数 所以有:f[n+1][k] = ((n+1)^k)*(x^(n+1)) (二次多项式展开) = x*( C(k,0)*(x^n)+C(k,1)*n*(x^n)+...+C(k,k)*(n^k)*(x^n) ) = x*( C(k,0)*f[n][0]+C(k,1)*f[n][1]+...+C(k,k)*f[n][k] ) 得到递推式就可以用矩阵进行快速幂求解 |x*1 0................................0| |f[n][0]| |f[n+1][0]| |x*1 x*1 0............................0| |f[n][1]| |f[n+1][1]| |x*1 x*2 x*1 0........................0| * |f[n][2]| = |f[n+1][2]| |......................................| |.......| |.........| |x*1 x*C(k,1) x*C(k,2)...x*C(k,x) 0...0| |f[n][k]| |f[n+1][k]| |......................................| |.......| |.........| |x*1 x*C(x,1) x*C(x,2).......x*C(x,x) 0| |f[n][x]| |f[n+1][x]| |0................................0 1 1| |g[n-1] | | g[ n ] | */ #include<bits/stdc++.h> #define ll long long using namespace std; ll n,x,mod; ll c[55][55]; ll unit; /********************************矩阵模板**********************************/ class Matrix { public: ll a[55][55]; int n; void init() { memset(a,0,sizeof(a));// #出错 for(int i=0;i<=n;i++){ for(int j=0;j<=i;j++){ a[i][j]=x*c[i][j]%mod; } } a[x+1][x]=a[x+1][x+1]=1; } Matrix operator +(Matrix b) { Matrix c; c.n = n; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) c.a[i][j] = (a[i][j] + b.a[i][j]) % mod; return c; } Matrix operator +(int x) { Matrix c = *this; for (int i = 0; i < n; i++) c.a[i][i] += x; return c; } Matrix operator *(Matrix b) { Matrix p; p.n = b.n; memset(p.a,0,sizeof p.a); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) p.a[i][j] = (p.a[i][j] + (a[i][k]*b.a[k][j])%mod) % mod; return p; } Matrix power(int t) { Matrix ans,p = *this; ans.n = p.n; memset(ans.a,0,sizeof ans.a); for(int i=0;i<=n;i++){//初始化ans ans.a[i][i]=1; } while (t) { if (t & 1) ans=ans*p; p = p*p; t >>= 1; } return ans; } }init; void Init(){//求组合数 memset(c,0,sizeof c); for(ll i=0;i<=x;i++) c[i][0]=c[i][i]=1; for(ll i=2;i<=x;i++) for(ll j=1;j<i;j++) c[i][j]=((ll)c[i-1][j-1]+c[i-1][j])%mod; unit=0; } /********************************矩阵模板**********************************/ int main(){ // freopen("in.txt","r",stdin); while(scanf("%lld%lld%lld",&n,&x,&mod)!=EOF&&(n>0,x>0,mod>0)){ Init();// #ok // for(int i=0;i<=x;i++){ // for(int j=0;j<=x;j++){ // cout<<c[i][j]<<" "; // } // cout<<endl; // } // cout<<endl; init.n=x+2; // cout<<"ok"<<endl; init.init(); // for(int i=0;i<=x+1;i++){ // for(int j=0;j<=x+1;j++){ // cout<<init.a[i][j]<<" "; // }cout<<endl; // } // cout<<"ok"<<endl; init=init.power(n); // for(int i=0;i<=x+1;i++){ // for(int j=0;j<=x+1;j++){ // cout<<init.a[i][j]<<" "; // }cout<<endl; // } for(int i=0;i<=x;i++){ unit+=( (x*init.a[x+1][i])%mod ); } printf("%lld ",(unit+mod)%mod); } return 0; }