Life is a Line |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) |
Total Submission(s): 198 Accepted Submission(s): 76 |
Problem Description
There is a saying: Life is like a line, some people are your parallel lines, while others are destined to meet you.
Maybe have met, maybe just a matter of time, two unparallel lines will always meet in some places, and now a lot of life (i.e. line) are in the same coordinate system, in a given open interval, how many pairs can meet each other? |
Input
There are several test cases in the input.
Each test case begin with one integer N (1 ≤ N ≤ 50000), indicating the number of different lines. Then two floating numbers L, R follow (-10000.00 ≤ L < R ≤ 10000.00), indicating the interval (L, R). Then N lines follow, each line contains four floating numbers x1, y1, x2, y2 (-10000.00 ≤ x1, y1, x2, y2 ≤ 10000.00), indicating two different points on the line. You can assume no two lines are the same one. The input terminates by end of file marker. |
Output
For each test case, output one integer, indicating pairs of intersected lines in the open interval, i.e. their intersection point’s x-axis is in (l, r).
|
Sample Input
3 0.0 1.0 0.0 0.0 1.0 1.0 0.0 2.0 1.0 2.0 0.0 2.5 2.5 0.0 |
Sample Output
1 |
Author
iSea @ WHU
|
Source
2010 ACM-ICPC Multi-University Training Contest(3)——Host by WHU
|
Recommend
zhouzeyong
|
/* 题意:给出你n条直线的两点,让你求出在l到r区间内的交点个数 初步思路:首先暴力肯定是行不通的,可以转化成在(l,r)区间内的线段相交问题,线段相交可以想想成是竖直方向上的覆盖面 重叠问题,就是一条线段在(l,r)区间内的竖直方向的覆盖区域,如果两条线段的覆盖区域有重叠的那么这两条线段肯定是 相交的,这样就转化成了求逆序对问题 树状数组求逆序对,先将序对按照从小到大的循序排列,然后查找另一侧查找比他大的序对有多少 */ #include<bits/stdc++.h> #define INF 0x3f3f3f3f #define exp 1e-6 #define lowbit(x) ( x&(-x) ) using namespace std; struct Point{//点 double x,y; int id; Point(){} Point(int a,int b){ x=a; y=b; } void input(){//定义输入函数方便用的时候 scanf("%lf%lf",&x,&y); } }; vector<Point>v;//用来存放所有的线段(序对) Point a,b; double l,r; int n; int res=0; int c[50010]; Point manage(Point a,Point b){//处理出来在竖直方向的覆盖线段 Point cur; if(a.x!=b.x&&a.y==b.y){//水平方向的线段 cur.x=a.y; cur.y=a.y; return cur; } double k=(b.y-a.y)/(b.x-a.x); double t=a.y-a.x*k; cur.x=k*l+t; cur.y=k*r+t; return cur; } bool cmp_1(Point a,Point b){ if(a.x!=b.x) return a.x<b.x; return a.y<b.y; } bool cmp_2(Point a,Point b){ if(a.y!=b.y) return a.y>b.y; return a.x>b.x; } void add(int x){ while(x<50005){ c[x]++; x+=lowbit(x); } } int getsum(int x){ int res=0; while(x>0){ res+=c[x]; x-=lowbit(x); } return res; } void init(){ v.clear(); res=0; memset(c,0,sizeof c); } int main(){ // freopen("in.txt","r",stdin); while(scanf("%d",&n)!=EOF){ init(); scanf("%lf%lf",&l,&r); //cout<<l<<" "<<r<<endl; for(int i=0;i<n;i++){ a.input(); b.input(); if(a.x==b.x){//竖直方向上的线段 if(a.x>l&&a.x<r) res++; continue; } v.push_back(manage(a,b)); }//处理输入 // cout<<"ok"<<endl; //离散化坐标 sort(v.begin(),v.end(),cmp_1); for(int i=0;i<v.size();i++){ v[i].id=i+1; } // cout<<"ok"<<endl; int cur=0; sort(v.begin(),v.end(),cmp_2); for(int i=0;i<v.size();i++){ add(v[i].id); //cout<<v[i].id<<" "; // cout<<"ok"<<endl; cur+=getsum(v[i].id-1); //cout<<i<<endl; } //cout<<endl; // for(int i=0;i<10;i++){ // cout<<c[i]<<" "; // } printf("%d ",cur+res*v.size()); } return 0; }