• Line belt


    Problem Description
    In a two-dimensional plane there are two line belts, there are two segments AB and CD, lxhgww's speed on AB is P and on CD is Q, he can move with the speed R on other area on the plane.
    How long must he take to travel from A to D?

    Input
    The first line is the case number T.
    For each case, there are three lines.
    The first line, four integers, the coordinates of A and B: Ax Ay Bx By.
    The second line , four integers, the coordinates of C and D:Cx Cy Dx Dy.
    The third line, three integers, P Q R.
    0<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
    1<=P,Q,R<=10

    Output
    The minimum time to travel from A to D, round to two decimals.

    Sample Input
    1
    0 0 0 100
    100 0 100
    100 2 2 1

    Sample Output
    136.60
    题意:有两个传送带,由A到B的速度是p,有C到D的速度是q,其他速度是r,求由A到D的最少时间;如图(原创)
    Line <wbr>belt
      
    解题思路:在A,B之间去mid,然后三分求最小时间,三分过程中是A到mid的时间加上mid到D的时间(mid到D的时间,也用三分求,最好写一个函数,求A到mid的时间用三分时,每计算一次,都得在当前状态求一个mid到D的时间),然后就能得出来最小时间;
    感悟:思路不好想;刚开始想的是,在AB中去mid先求出最合适的mid到D的时间,然后把B转移到mid,然后再在CD上取mid,求最合适的mid;这样不是动态中求得,不行。
    思路不好写,代码更不好写啊,用do,while能过,用while就过不了;
    代码:
    #include
    #include
    #include
    #include
    #include
    using namespace std;
    const double eps=1e-6;


    struct coordinate
    {
        double x;
        double y;
    };
    coordinate A,B,C,D;
    int t;
    double p,q,r;
    double dis(coordinate a,coordinate b)
    {
        double t;
        t=sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
        //printf("t=%.2f ",t);
        return t;
    }//求两点之间的距离
    coordinate midc(coordinate a,coordinate b)
    {
        coordinate t;
        t.x=(a.x+b.x)*0.5;
        t.y=(a.y+b.y)*0.5;
        return t;
    }//求坐标的中点
    double time(coordinate a,coordinate b,coordinate c,coordinate d)
    {
        double t;
        t=dis(a,b)/p+dis(b,c)/r+dis(c,d)/q;
        //printf("t=%.2f ",t);
        return t;
    }//求路径的总时间
    double Three_algorithm_1(coordinate a,coordinate c,coordinate d)
    {
        double t1,t2;
        coordinate left,right,mid,midmid;
        left=c;
        right=d;
        do
        {
            mid=midc(left,right);
            midmid=midc(mid,right);
           // printf("dis(right,left)=%.5f ",dis(right,left));
            t1=dis(a,mid)/r+dis(mid,d)/q;
            t2=dis(a,midmid)/r+dis(midmid,d)/q;
            if(t1>t2)left=mid;
            else right=midmid;
        }while(dis(right,left)>=eps);
        return t1;
    }//先求出A到CD段的最小时间
    double Three_algorithm_2(coordinate a,coordinate b,coordinate c,coordinate d)
    {
        double t1,t2;
        coordinate left,right,mid,midmid;
        left=a;
        right=b;
        mid=midc(left,right);
        midmid=midc(mid,right);
        do
        {
            mid=midc(left,right);
            midmid=midc(mid,right);
            //printf("dis(right,left)=%.f ",dis(right,left));
            t1=dis(a,mid)/p+Three_algorithm_1(mid,c,d);
            t2=dis(a,midmid)/p+Three_algorithm_1(midmid,c,d);
            if(t1>t2)left=mid;
            else right=midmid;
        }while(dis(right,left)>=eps);
        return t1;
    }//加上前面求出的先求出A到CD段的最小时间,用三分求最少时间
    int main()
    {
        //freopen("in.txt", "r", stdin);
        scanf("%d",&t);
        for(int i=0;i
        {
            scanf("%lf%lf%lf%lf",&A.x,&A.y,&B.x,&B.y);
            scanf("%lf%lf%lf%lf",&C.x,&C.y,&D.x,&D.y);
            scanf("%lf%lf%lf",&p,&q,&r);
            printf("%.2lf ",Three_algorithm_2(A,B,C,D));
        }
    }
  • 相关阅读:
    Nginx配置文件详解
    JVM调优—性能分析神器-JProfiler详解
    Navicat Premium 15破解
    Nginx配置反向代理,负载均衡,动静分离,高可用
    Nginx安装和常用命令
    Spring中ApplicationContextAware的作用
    java中发起http和https请求
    MySql高可用架构
    matlab画3维meshgrid/plot3/mesh/surf的用法
    如何规范地编写一个MATLAB函数文件
  • 原文地址:https://www.cnblogs.com/wuwangchuxin0924/p/5781627.html
Copyright © 2020-2023  润新知