• 【转】学神IT教你Python应该怎么学


    我在学习的过程中,深深的绝的对于成人或者进入职场的人来说,学习一门新的知识,目的不在于积累,而在于解决问题。

    所以这就要求我想明白3个问题:

    1,学习python,要解决什么问题?解决这个问题,是要为了确定学习方向。

    2,要学哪些东西?解决这个问题,是为了规划好学习路径,建立学习地图。

    3,怎样学?解决这个问题,是为了找到高效学习的方法。

    1,选择好方向

    我要学习python的目的不是为了解这门语言,而是为了要学会运用这门语言来解决问题。

    但python的应用方向,实在太广了。在python基础知识学完之后,如果应用方向不同,要学习的东西也会大不同。

    我不能说我要做web开发,学完python基础知识,跑去学numpy,pandas等知识,也不能说我要用python做数据分析,学完python基础知识,然后就跑去学django,flask框架。这个道理,就跟我们想要去泰国旅行,肯定不会买去日本的机票一样,很简单,但是我们不得不承认,还是会有人犯迷糊,上来就开干。

    我学习python,是因为在工作中慢慢了解到python在数据分析方面,基本涵盖了“数据获取→数据处理→数据分析→数据可视化”这个流程中每个环节,是数据分析的利器,话说这风骚的操作,也是没谁了。

    2,规划好路径

    当我确定好方向后,下一步骤就是顺着这个方向,建立好我自己的学习路径地图。

    这个路径是1个系统性的逻辑主线,这个主线会让我知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。然后每学习一个部分,我就能够有一些实际的成果输出,利用成果产出来形成正向刺激,激励后续的学习。

    而且,如果我们身在职场,大多时候我们是没有很大块的时间来集中学习的。我们的学习时间被分割在了一些碎片化的时间里。在碎片化的时间里,系统性的学习一门知识,更需要有一个贯穿前后,系统的逻辑主线,来串联所有相关碎片化的时间的学习。

    当我确定好学习python的数据分析知识,就按照数据分析的流程“数据获取→数据处理→数据分析→数据可视化”这个路径,给自己建立了学习地图:

    1,python基础知识

    2,爬虫基本知识+sql

    3,numpy

    4,pandas

    5,matplotlib

    6,sklearn

    7,统计学与概率论

    3,对基本概念建立认知

    python是我学习的第一门编程语言,我在开始学习python的时候,是一个连什么是字符串都不知道小白。所以对我来说,最重要的开始是,首先对这一领域的基本概念建立认知!

    事实上,对一门领域完全零基础的人,想要开始学习它的话,真正重要的工作是先对这门领域的基本概念建立认知。

    比如我在看到教程中有句话是“为变量赋值”,那我至少得知道,什么是变量?赋值是什么意思?

    不知道为什么这么重要的一个开始,竟没有答案提到,更不知道是大家都天赋异禀,觉得不屑于提起这基础的步骤,还是很多人已经忘记了从小白一路走过来的痛苦和挣扎。人是会篡改记忆的,会认为现在拥有的都是轻松获得的,但真实的经历永远都是坎坷曲折的。

    但其实,对真正如我一样的0基础的小白来说,大多时候,python是我们学习的第一门编程语言。所以这个时候,对我们来说,学习python,不仅是学习这门语言本身,还是在借着这门语言,帮我们建立对编程世界的一些基本概念的认知。

    当我入了门之后,就是顺着在第二步建立的学习路径,一路升级打怪,毕竟,我的征途是星辰大海!

    4,最后,学习中需要注意的问题

    A,一开始绝不陷入底层原理和细枝末节的纠缠

    这个坑,是把我坑的最深的坑。

    举个例子,我学到函数的时候,我在开始的时候只需要,学会怎么定义函数,怎么调用函数这些基础知识,完全不需要一开始就深入到,研究函数参数的传递规则,到底是值传递,还是引用传递。

    不是说这底层知识不重要,至少在入门的时候,我们不用一上来就深入这个层面。因为知识的学习,是一个线性的,从潜入深的顺序。如果一开始,就眉毛胡子一把抓,不分主次,可能我们很快就会体会到“从入门到放弃”是一种什么样的感觉。

    而且我们在后续的学习过程中,其本身就是在“运用中深入理解,在深入理解中优化应用”。相互印证理解,是一种自然而然的深入学习过程。

    B,最好是按照系统性的课程或书本来学习

    既然在这个领域是新手,先接受一个已经存在的系统,再在上面修修改改,是最适合的方案。作为新手,如果依靠自学来学习一门领域的知识,根据我的经验,我依然认为最好的老师,仍旧是成体系的课程或书本。

    网上的文章或帖子,其实非常不适合充当我们系统性的学习一门知识的教材,因为它是非常碎片化的知识,东一榔头西一棒子,不成体系。不要指望自己能把散落的信息整合成系统的,那是高手要做的事情。不过这些东西,可以作为我们对某些细节的查漏补缺的参考。

    C,以能用起来,解决问题为指导原则

    在工作中,需要的更多的是一种解决问题的工程性思维,所以很多时候,我们能掉包解决问题,就没必要自己造轮子。

    举个例子,boss要去机场,那我只要会开车,驱车把boss送到目的地就行,而不需要我去研究怎么怎么造车轮,怎么造发动机,怎么造电瓶。。。。。。

    当然,如果我们学有余力,能深入,肯定是只好不坏。但还是那句话,开始的时候,不眉毛胡子一把抓。

    D,没有什么牛逼的事情是能够速成的,越是底层的、收益周期越长的技能越是这样。

    “大道甚夷,而人好径,终为所误”。我们总会在踩了无数的坑后,才恍然大悟:捷径往往是最长的弯路。学习一门领域的知识,对于普通人人在短时间内从0到1入个门,倒是不难,但是从1到10,到100,进阶为高手,没有长时间的投入和刻意练习,无异于痴人说梦。当我理解这个道理,也知道自己资质并非属于天选之子的时候,就不会急于求成而去费尽心思想找到一条捷径:试图用3个月的时间,去完成别人用了3年才能做到的事情。

     

    http://blog.sina.com.cn/s/blog_17bde9cb70102x8wo.html

  • 相关阅读:
    Ubuntu开源推进全面展开抢占微软市场
    sb600芯片下,操持ubuntu没有声响的要领(ubuntu8.04上乐成)
    centos下设置ssh衔接工夫
    入门linux
    centos下进入单用户情势
    ubuntu hardy下的smtp管事
    MySQL数据库中查找执行从命慢的SQL语句
    mac、xp、linux共存
    Linux和Windows终究哪个更适用
    Debian下的mozilla眷属
  • 原文地址:https://www.cnblogs.com/wutou/p/14175641.html
Copyright © 2020-2023  润新知