• hdu2966 In case of failure(这道题就和ta的name一样,failure)


    Problem Description
    To help their clients deal with faulty Cash Machines, the board of The Planar Bank has decided to stick a label expressing sincere regret and sorrow of the bank about the failure on every ATM. The very same label would gently ask the customer to calmly head to the nearest Machine (that should hopefully
    work fine).

    In order to do so, a list of two-dimensional locations of all n ATMs has been prepared, and your task is to find for each of them the one closest with respect to the Euclidean distance.

    Input
    The input contains several test cases. The very first line contains the number of cases t (t <= 15) that follow. Each test cases begin with the number of Cash Machines n (2 <= n <= 10^5). Each of the next n lines contain the coordinates of one Cash Machine x,y (0 <= x,y <=10^9) separated by a space. No two
    points in one test case will coincide.

    Output
    For each test case output n lines. i-th of them should contain the squared distance between the i-th ATM from the input and its nearest neighbour.

    Sample Input
    2
    10
    17 41
    0 34
    24 19
    8 28
    14 12
    45 5
    27 31
    41 11
    42 45
    36 27
    15
    0 0
    1 2
    2 3
    3 2
    4 0
    8 4
    7 4
    6 3
    6 1
    8 0
    11 0
    12 2
    13 1
    14 2
    15 0

    Sample Output
    200
    100
    149
    100
    149
    52
    97
    52
    360
    97
    5
    2
    2
    2
    5
    1
    1
    2
    4
    5
    5
    2
    2
    2
    5

    分析:
    KDtree

    tip

    下方高能
    我写好了之后,交上去就是WA

    于是就从网上扒了一个AC代码对拍

    狂拍不止,结果如下
    这里写图片描述

    疯了吗,没错就是WA,我放弃了。。。

    这里写代码片
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define ll long long
    
    using namespace std;
    
    const ll INF=0x33333333;
    struct node{
        int l,r,d[2],mn[2],mx[2],id;
    };
    node t[100010];
    int root,n,x,y,cmpd,po[100010][2];
    ll ans;
    
    int cmp(const node &a,const node &b)
    {
        return ((a.d[cmpd]<b.d[cmpd])||((a.d[cmpd]==b.d[cmpd])&&(a.d[!cmpd]<b.d[!cmpd])));
    }
    
    void update(int bh)
    {
        int lc=t[bh].l;
        int rc=t[bh].r;
        if (lc)
        {
            t[bh].mn[0]=min(t[bh].mn[0],t[lc].mn[0]);
            t[bh].mn[1]=min(t[bh].mn[1],t[lc].mn[1]);
            t[bh].mx[0]=max(t[bh].mx[0],t[lc].mx[0]);
            t[bh].mx[1]=max(t[bh].mx[1],t[lc].mx[1]);
        }
        if (rc)
        {
            t[bh].mn[0]=min(t[bh].mn[0],t[rc].mn[0]);
            t[bh].mn[1]=min(t[bh].mn[1],t[rc].mn[1]);
            t[bh].mx[0]=max(t[bh].mx[0],t[rc].mx[0]);
            t[bh].mx[1]=max(t[bh].mx[1],t[rc].mx[1]);
        }
    }
    
    int build(int l,int r,int D)
    {
        cmpd=D;
        int mid=(l+r)>>1;
        nth_element(t+l+1,t+mid+1,t+r+1,cmp);
        t[mid].mn[0]=t[mid].mx[0]=t[mid].d[0];
        t[mid].mn[1]=t[mid].mx[1]=t[mid].d[1];
        if (l!=mid) t[mid].l=build(l,mid-1,!D);
        if (r!=mid) t[mid].r=build(mid+1,r,!D);
        update(mid);
        return mid;
    }
    
    ll sqr(ll x) {return x*x;}
    ll minn(ll a,ll b){if (a<b) return a;else return b;}
    
    ll dis(int p,int x,int y)
    {
        ll d=0;
        if (x<t[p].mn[0]) d+=sqr((ll)t[p].mn[0]-x);
        if (x>t[p].mx[0]) d+=sqr((ll)x-t[p].mx[0]);
        if (y<t[p].mn[1]) d+=sqr((ll)t[p].mn[1]-y);
        if (y>t[p].mx[1]) d+=sqr((ll)y-t[p].mx[1]);
        return d;
    }
    
    void ask(int now)
    {
        ll d0,dl,dr;
        d0=sqr((ll)t[now].d[0]-x)+sqr((ll)t[now].d[1]-y);
        if (t[now].l) dl=dis(t[now].l,x,y);
        else dl=INF;
        if (t[now].r) dr=dis(t[now].r,x,y);
        else dr=INF;
        if (d0) ans=minn(ans,d0);
        if (dl<dr)
        {
            if (dl<ans) ask(t[now].l);
            if (dr<ans) ask(t[now].r);
        }
        else
        {
            if (dr<ans) ask(t[now].r);
            if (dl<ans) ask(t[now].l);
        }
    }
    
    ll an[150000];
    
    int main()
    {
        int T;
        scanf("%d",&T);
        while (T--)
        {
            memset(t,0,sizeof(t));
            scanf("%d",&n);
            for (int i=1;i<=n;i++)
                scanf("%d%d",&t[i].d[0],&t[i].d[1]),t[i].id=i;
            root=build(1,n,0);
            for (int i=1;i<=n;i++) 
            {
                x=t[i].d[0]; y=t[i].d[1];
                ans=INF;
                ask(root);
                an[t[i].id]=ans;
            }
            for (int i=1;i<=n;i++) printf("%lld
    ",an[i]); 
        }
        return 0;
    }
  • 相关阅读:
    Kotlin调用lambda表达式时,lambda中的参数名字省略问题
    Kotlin读取控制台输入
    安卓P(9)及以上Cleartext HTTP traffic to xxx not permitted错误,无法HTTP明文连接错误解决方法
    AS4.0以上查看R.id
    Kotlin Standard.kt解析(also,apply,let.run...)
    ext4文件解包打包
    Kotlin中的var、val和const
    Kotlin的构造方法探究
    Markdown语法
    uniapp遇到的小问题
  • 原文地址:https://www.cnblogs.com/wutongtong3117/p/7673345.html
Copyright © 2020-2023  润新知