• hdu2966 In case of failure(这道题就和ta的name一样,failure)


    Problem Description
    To help their clients deal with faulty Cash Machines, the board of The Planar Bank has decided to stick a label expressing sincere regret and sorrow of the bank about the failure on every ATM. The very same label would gently ask the customer to calmly head to the nearest Machine (that should hopefully
    work fine).

    In order to do so, a list of two-dimensional locations of all n ATMs has been prepared, and your task is to find for each of them the one closest with respect to the Euclidean distance.

    Input
    The input contains several test cases. The very first line contains the number of cases t (t <= 15) that follow. Each test cases begin with the number of Cash Machines n (2 <= n <= 10^5). Each of the next n lines contain the coordinates of one Cash Machine x,y (0 <= x,y <=10^9) separated by a space. No two
    points in one test case will coincide.

    Output
    For each test case output n lines. i-th of them should contain the squared distance between the i-th ATM from the input and its nearest neighbour.

    Sample Input
    2
    10
    17 41
    0 34
    24 19
    8 28
    14 12
    45 5
    27 31
    41 11
    42 45
    36 27
    15
    0 0
    1 2
    2 3
    3 2
    4 0
    8 4
    7 4
    6 3
    6 1
    8 0
    11 0
    12 2
    13 1
    14 2
    15 0

    Sample Output
    200
    100
    149
    100
    149
    52
    97
    52
    360
    97
    5
    2
    2
    2
    5
    1
    1
    2
    4
    5
    5
    2
    2
    2
    5

    分析:
    KDtree

    tip

    下方高能
    我写好了之后,交上去就是WA

    于是就从网上扒了一个AC代码对拍

    狂拍不止,结果如下
    这里写图片描述

    疯了吗,没错就是WA,我放弃了。。。

    这里写代码片
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define ll long long
    
    using namespace std;
    
    const ll INF=0x33333333;
    struct node{
        int l,r,d[2],mn[2],mx[2],id;
    };
    node t[100010];
    int root,n,x,y,cmpd,po[100010][2];
    ll ans;
    
    int cmp(const node &a,const node &b)
    {
        return ((a.d[cmpd]<b.d[cmpd])||((a.d[cmpd]==b.d[cmpd])&&(a.d[!cmpd]<b.d[!cmpd])));
    }
    
    void update(int bh)
    {
        int lc=t[bh].l;
        int rc=t[bh].r;
        if (lc)
        {
            t[bh].mn[0]=min(t[bh].mn[0],t[lc].mn[0]);
            t[bh].mn[1]=min(t[bh].mn[1],t[lc].mn[1]);
            t[bh].mx[0]=max(t[bh].mx[0],t[lc].mx[0]);
            t[bh].mx[1]=max(t[bh].mx[1],t[lc].mx[1]);
        }
        if (rc)
        {
            t[bh].mn[0]=min(t[bh].mn[0],t[rc].mn[0]);
            t[bh].mn[1]=min(t[bh].mn[1],t[rc].mn[1]);
            t[bh].mx[0]=max(t[bh].mx[0],t[rc].mx[0]);
            t[bh].mx[1]=max(t[bh].mx[1],t[rc].mx[1]);
        }
    }
    
    int build(int l,int r,int D)
    {
        cmpd=D;
        int mid=(l+r)>>1;
        nth_element(t+l+1,t+mid+1,t+r+1,cmp);
        t[mid].mn[0]=t[mid].mx[0]=t[mid].d[0];
        t[mid].mn[1]=t[mid].mx[1]=t[mid].d[1];
        if (l!=mid) t[mid].l=build(l,mid-1,!D);
        if (r!=mid) t[mid].r=build(mid+1,r,!D);
        update(mid);
        return mid;
    }
    
    ll sqr(ll x) {return x*x;}
    ll minn(ll a,ll b){if (a<b) return a;else return b;}
    
    ll dis(int p,int x,int y)
    {
        ll d=0;
        if (x<t[p].mn[0]) d+=sqr((ll)t[p].mn[0]-x);
        if (x>t[p].mx[0]) d+=sqr((ll)x-t[p].mx[0]);
        if (y<t[p].mn[1]) d+=sqr((ll)t[p].mn[1]-y);
        if (y>t[p].mx[1]) d+=sqr((ll)y-t[p].mx[1]);
        return d;
    }
    
    void ask(int now)
    {
        ll d0,dl,dr;
        d0=sqr((ll)t[now].d[0]-x)+sqr((ll)t[now].d[1]-y);
        if (t[now].l) dl=dis(t[now].l,x,y);
        else dl=INF;
        if (t[now].r) dr=dis(t[now].r,x,y);
        else dr=INF;
        if (d0) ans=minn(ans,d0);
        if (dl<dr)
        {
            if (dl<ans) ask(t[now].l);
            if (dr<ans) ask(t[now].r);
        }
        else
        {
            if (dr<ans) ask(t[now].r);
            if (dl<ans) ask(t[now].l);
        }
    }
    
    ll an[150000];
    
    int main()
    {
        int T;
        scanf("%d",&T);
        while (T--)
        {
            memset(t,0,sizeof(t));
            scanf("%d",&n);
            for (int i=1;i<=n;i++)
                scanf("%d%d",&t[i].d[0],&t[i].d[1]),t[i].id=i;
            root=build(1,n,0);
            for (int i=1;i<=n;i++) 
            {
                x=t[i].d[0]; y=t[i].d[1];
                ans=INF;
                ask(root);
                an[t[i].id]=ans;
            }
            for (int i=1;i<=n;i++) printf("%lld
    ",an[i]); 
        }
        return 0;
    }
  • 相关阅读:
    常用的npm指令总结
    Mongoose基础
    2016总结与展望
    sleep与wait的区别
    查询平均分大于80分的学生
    求最大不重复子串
    快速排序
    按位与(&)运算的作用
    异或运算的作用
    java 字符串中的每个单词的倒序输出
  • 原文地址:https://www.cnblogs.com/wutongtong3117/p/7673344.html
Copyright © 2020-2023  润新知