分析:
我现在深刻怀疑歪果人的表达能力
看看这个题面:
He considerstaking a path from A to B to beprogress if there exists a route from B to his home that is shorter than any possible route from A.
他只沿着满足如下条件的道路(A,B)走:
存在一条从B出发回家的路径,比所有从A出发回家的路径都短
实际上是指从家出发做dijkstra,当且仅当dis[B] < dis[A]加入A—>B的有向边
注意
A—>B的有向边必须是原图中就存在的一条边
我们求出dis数组之后,重新建一个图
新建出来的图是一个DAG
我们就可以用dp解决路径计数的问题了
tip
循环所有的边(共m条)进行判断加边就好了
挺方便的
//这里写代码片
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define ll long long
using namespace std;
const int INF=0x3f3f3f3f;
const int N=1005;
const int S=1;
const int E=2;
int n,m,dist[N];
int f[N];
vector<int> G2[1010];
struct node{
int x,y,v;
};
struct heapnode{
int d,u;
bool operator < (const heapnode &a) const
{
return d>a.d;
}
};
struct Dijkstra{
int n,m;
vector<node> e;
vector<int> G[N];
int dis[N];
int pre[N];
bool p[N];
void init(int n)
{
this->n=n;
e.clear();
for (int i=1;i<=n;i++) G[i].clear();
}
void add(int u,int w,int z)
{
e.push_back((node){u,w,z});
m=e.size();
G[u].push_back(m-1);
}
void dij(int s)
{
for (int i=1;i<=n;i++) dis[i]=INF;
memset(pre,0,sizeof(pre));
memset(p,1,sizeof(p));
dis[s]=0;
priority_queue<heapnode> Q;
Q.push((heapnode){0,s});
while (!Q.empty())
{
heapnode now=Q.top(); Q.pop();
int u=now.u;
if (!p[u]) continue;
p[u]=0;
for (int i=0;i<G[u].size();i++)
{
node way=e[G[u][i]];
if (dis[way.y]>dis[u]+way.v)
{
dis[way.y]=dis[u]+way.v;
pre[way.y]=G[u][i];
Q.push((heapnode){dis[way.y],way.y});
}
}
}
}
};
Dijkstra A;
int solve(int now)
{
if (f[now]!=-1) return f[now];
if (now==E)
{
f[now]=1;
return f[now];
}
int ans=0;
for (int i=0;i<G2[now].size();i++)
{
int v=G2[now][i];
ans+=solve(v);
}
f[now]=ans;
return f[now];
}
int main()
{
int cnt=0;
scanf("%d",&n);
while (n)
{
scanf("%d",&m);
A.init(n);
for (int i=1;i<=m;i++)
{
int u,w,z;
scanf("%d%d%d",&u,&w,&z);
A.add(u,w,z);
A.add(w,u,z);
}
A.dij(E);
for (int i=1;i<=n;i++) dist[i]=A.dis[i];
for (int i=1;i<=n;i++) G2[i].clear();
for (int i=0;i<A.m;i++)
{
node way=A.e[i];
int u=way.x,v=way.y;
if (A.dis[u]>A.dis[v])
G2[u].push_back(v);
}
memset(f,-1,sizeof(f));
printf("%d
",solve(S));
scanf("%d",&n); ///
}
return 0;
}