我还是用了很朴素的暴力匹配A了这题,不得不感叹USACO时间放的好宽...
/* ID: wushuai2 PROG: hamming LANG: C++ */ //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include <stdio.h> #include <iostream> #include <fstream> #include <cstring> #include <cmath> #include <stack> #include <string> #include <map> #include <set> #include <list> #include <queue> #include <vector> #include <algorithm> #define Max(a,b) (((a) > (b)) ? (a) : (b)) #define Min(a,b) (((a) < (b)) ? (a) : (b)) #define Abs(x) (((x) > 0) ? (x) : (-(x))) #define MOD 1000000007 #define pi acos(-1.0) using namespace std; typedef long long ll ; typedef unsigned long long ull ; typedef unsigned int uint ; typedef unsigned char uchar ; template<class T> inline void checkmin(T &a,T b){if(a>b) a=b;} template<class T> inline void checkmax(T &a,T b){if(a<b) a=b;} const double eps = 1e-7 ; const int M = 660000 ; const ll P = 10000000097ll ; const int INF = 0x3f3f3f3f ; const int MAX_N = 20 ; const int MAXSIZE = 101000000; int n, b, d; int ans[80]; bool func(int b){ int i, j, cnt; int t1[50], t2[50]; memset(t2, 0, sizeof(t2)); while(b){ t2[++t2[0]] = b % 2; b = (b - b % 2) / 2; } for(int k = 1; k <= ans[0]; ++k){ cnt = 0; int a = ans[k]; memset(t1, 0, sizeof(t1)); while(a){ t1[++t1[0]] = a % 2; a = (a - a % 2) / 2; } for(i = 1; i <= Max(t1[0], t2[0]); ++i){ if(t1[i] != t2[i]) ++cnt; } if(cnt < d) return false; } return true; } int main() { ofstream fout ("hamming.out"); ifstream fin ("hamming.in"); int i, j, k, t, n, s, c, w, q; fin >> n >> b >> d; ++ans[0]; ans[1] = 0; int num = 1; while(ans[0] <= n){ if(func(num)){ ++ans[0]; ans[ans[0]] = num; } ++num; } for(i = 1; i < ans[0]; ++i){ fout << ans[i]; if(i == ans[0] - 1){ break; } if(i % 10 == 0) fout << endl; else fout << ' '; } fout << endl; fin.close(); fout.close(); return 0; }
不过看了官方题解觉得很不错,来分享一下
for (a = 0; a < maxval; a++) for (b = 0; b < maxval; b++) { dist[a][b] = 0; for (c = 0; c < B; c++) if (((1 << c) & a) != ((1 << c) & b)) dist[a][b]++; }
通过以上这段代码可以找到所有1 << B 中所有数的关系,就是二进制下不同的位数
然后通过一个DFS 来找可行对
void findgroups(int cur, int start) { int a, b, canuse; char ch; if (cur == N) { for (a = 0; a < cur; a++) { if (a % 10) fprintf(out, " "); fprintf(out, "%d", nums[a]); if (a % 10 == 9 || a == cur-1) fprintf(out, " "); } exit(0); } for (a = start; a < maxval; a++) { canuse = 1; for (b = 0; b < cur; b++) if (dist[nums[b]][a] < D) { canuse = 0; break; } if (canuse) { nums[cur] = a; findgroups(cur+1, a+1); } } }
不难得出,核心代码很短也很好写
找到全部N个数之后输出一下就可以了