• HDU 1028 Ignatius and the Princess III (生成函数/母函数)


    题目链接:HDU 1028

    Problem Description

    "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

    "The second problem is, given an positive integer N, we define an equation like this:

    N=a[1]+a[2]+a[3]+...+a[m];

    a[i]>0,1<=m<=N;

    My question is how many different equations you can find for a given N.

    For example, assume N is 4, we can find:

    4 = 4;

    4 = 3 + 1;

    4 = 2 + 2;

    4 = 2 + 1 + 1;

    4 = 1 + 1 + 1 + 1;

    so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

    Input

    The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.

    Output

    For each test case, you have to output a line contains an integer P which indicate the different equations you have found.

    Sample Input

    4
    10
    20
    

    Sample Output

    5
    42
    627
    

    Solution

    题意

    给定 (n),求 (n) 的划分数。

    思路

    普通母函数。母函数 (G(x) = (1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)...)

    ((1+x+x^2+...)=(x^{0 imes1}+x^{1 imes1}+x^{2 imes1}+...)) 代表不用数字 (1),用一次数字 (1),用两次数字 (1)……

    动态规划的版本见这里

    Code

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 200;
    
    int c1[maxn], c2[maxn];
    
    void init() {
        for(int i = 0; i < maxn; ++i) {
            c1[i] = 1;
            c2[i] = 0;
        }
        for(int i = 2; i < maxn; ++i) {
            for(int j = 0; j < maxn; ++j) {
                for(int k = 0; k + j < maxn; k += i) {
                    c2[k + j] += c1[j];
                }
            }
            for(int j = 0; j < maxn; ++j) {
                c1[j] = c2[j];
                c2[j] = 0;
            }
        }
    }
    
    int main() {
        init();
        int n;
        while(~scanf("%d", &n)) {
            printf("%d
    ", c1[n]);
        }
        return 0;
    }
    
  • 相关阅读:
    php函数注释
    组件化开发
    7.哪些工具可以帮助查找bug或进行静态分析
    6.Python中内存是如何管理的?
    5.Python是怎么解释的?
    4.pickling 和unpickling是什么?
    3.PEP 8是什么?
    2.Python是什么?使用Python的好处是什么?
    Redis介绍及字符串操作
    字符串转换为二进制
  • 原文地址:https://www.cnblogs.com/wulitaotao/p/11830457.html
Copyright © 2020-2023  润新知