• POJ 1679 The Unique MST (次小生成树)


    题目链接:POJ 1679

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique.

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:

    1. V' = V.
    2. T is connected and acyclic.

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    

    Source

    POJ Monthly--2004.06.27 srbga@POJ

    Solution

    题意

    给定一个连通的无向图 (没有重边),求最小生成树是否唯一。

    思路

    Kruskal

    求出次小生成树,如果次小生成树的边权和与最小生成树的边权和相等,则最小生成树不唯一。

    次小生成树的求法有很多,这里给出其中一种。

    次小生成树与最小生成树仅有一条边不同。先用 Kruskal 求出最小生成树,然后枚举最小生成树的每一条边,求删去该边后的最小生成树,所有情况中的最小的生成树就是次小生成树。

    Code

    #include <iostream>
    #include <cstdio>
    #include <queue>
    #include <map>
    #include <cmath>
    #include <algorithm>
    #include <cstring>
    using namespace std;
    const int N = 110, M = 1e5 + 10;
    const int inf = 0x3f3f3f3f;
    int n, m;
    
    struct Edge {
        int x, y, z;
    } edge[M];
    
    int fa[N];
    
    int cmp(Edge a, Edge b) {
        return a.z < b.z;
    }
    
    int get(int x) {
        if(x == fa[x]) return x;
        return fa[x] = get(fa[x]);
    }
    
    void init() {
        for(int i = 0; i <= N; ++i) {
            fa[i] = i;
        }
    }
    
    int mst[M];  // 最小生成树所有边的下标
    int mst_size;  // 最小生成树的边权和
    
    int kruskal() {
        init();
        int flag = 0;
        int ans = 0;
        mst_size = 0;
        sort(edge + 1, edge + 1 + m, cmp);
        for(int i = 1; i <= m; ++i) {
            int x = get(edge[i].x);
            int y = get(edge[i].y);
            if(x != y) {
                ans += edge[i].z;
                fa[x] = y;
                mst[++mst_size] = i;
            }
        }
        return ans;
    }
    
    // 次小生成树
    int sec_mst() {
        int ans = inf;
        for(int i = 1; i <= mst_size; ++i) {
            init();
            int sum = 0;
            int cnt = 0;
            for(int j = 1; j <= m; ++j) {
                if(j != mst[i]) {  // 删去最小生成树中的一条边
                    int x = get(edge[j].x);
                    int y = get(edge[j].y);
                    if(x != y) {
                        sum += edge[j].z;
                        fa[x] = y;
                        ++cnt;
                    }
                }
            }
            if(cnt != mst_size) continue;
            ans = min(ans, sum);
        }
        if(ans == inf) return -1;
        return ans;
    }
    
    int main() {
        int T;
        scanf("%d", &T);
        while(T--) {
            scanf("%d%d", &n, &m);
            for(int i = 1; i <= m; ++i) {
                scanf("%d%d%d", &edge[i].x, &edge[i].y, &edge[i].z);
            }
            int tmp1 = kruskal();
            int tmp2 = sec_mst();
            if(tmp1 == tmp2) {
                printf("Not Unique!
    ");
            } else {
                printf("%d
    ", tmp1);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    NSubstitute完全手册索引
    EntityFramework用法探索(二)CodeFirst
    NSubstitute完全手册(十八)检查调用顺序
    单元测试的两种方式
    C#使用Emit构造拦截器动态代理类
    使用Unity进行AOP对象拦截
    C#使用Emit生成构造函数和属性
    AFTER THE AMM, DECENTRALIZED ORDER BOOK EXCHANGES ARE RISING!
    常用Defi工具与网站
    揭秘FPGA:为什么比 GPU 的延迟低这么多?
  • 原文地址:https://www.cnblogs.com/wulitaotao/p/11674036.html
Copyright © 2020-2023  润新知