• HDU 6590 Code (判断凸包相交)


    2019 杭电多校 1 1013

    题目链接:HDU 6590

    比赛链接:2019 Multi-University Training Contest 1

    Problem Description

    After returning with honour from ICPC(International Cat Programming Contest) World Finals, Tom decides to say goodbye to ICPC and start a new period of life. He quickly gets interested in AI.

    In the subject of Machine Learning, there is a classical classification model called perceptron, defined as follows:

    Assuming we get a set of training samples: (D={(oldsymbol{x_1},y_1),(oldsymbol{x_2},y_2),...,(oldsymbol{x_N},y_N)}), with their inputs (oldsymbol{x}in mathbb{R}^d), and outputs (yin {−1,1}). We will try to find a function (f(oldsymbol{x})=sign(sum_{i=1}^d w_icdot x_i+b)=sign(oldsymbol{w^T} cdot oldsymbol{x}+b)) so that (f(oldsymbol{x_i})=y_i,i=1,2,...,N).

    (oldsymbol{w}, oldsymbol{x}) mentioned above are all d-dimensional vectors, i.e. (oldsymbol{w}=(w_1,w_2,...,w_d), oldsymbol{x}=(x_1,x_2,...,x_d)). To simplify the question, let (w_0=b), (x_0=1), then (f(oldsymbol{x})=sign(sum_{i = 0}^d w_icdot x_i)=sign(oldsymbol{w^T}cdot oldsymbol{x})). Therefore, finding a satisfying function (f(oldsymbol{x})) is equivalent to finding a proper (oldsymbol{w}).

    To solve the problem, we have a algorithm, PLA(Popcorn Label Algorithm).

    Accoding to PLA, we will randomly generate (oldsymbol{w}).

    If (f(oldsymbol{x})=sign(oldsymbol{w^T}cdot oldsymbol{x})) fails to give any element ((oldsymbol{x_i},y_i)in D) the right classification, i.e. (f(oldsymbol{x_i}) eq y_i), then we will replace (w) with another random vector. We will do this repeatedly until all the samples (in D) are correctly classified.

    As a former-JBer, Tom excels in programming and quickly wrote the pseudocode of PLA.

      w := a random vector
      while true do
          flag:=true
          for i:=1 to N do
              if f(x[ i ]) != y[ i ] then
                  flag:=false
                  break
          if flag then
              break
          else
              w := a random vector
      return w
    

    But Tom found that, in some occasions, PLA will end up into an infinite loop, which confuses him a lot. You are required to help Tom determine, when performed on a given sample set (D), if PLA will end up into an infinite loop. Print Infinite loop! if so, or Successful! otherwise.

    We only consider cases when (d=2) for simplification.

    Note:

    [sign(x)= egin{cases} -1& x < 0 \ 0& x = 0 \ 1& x > 0 end{cases} ]

    Input

    The first line contains an integer (T(1le Tle 1000)), the number of test cases.

    Each test case begins with a line containing a single integer (n(1le nle 100)), size of the set of training samples (D).

    Then (n) lines follow, the ith of which contains three integers (x_{i,1},x_{i,2},y_i (−10^5le x_{i,1},x_{i,2}le 10^5, y_iin {−1,1})), indicating the ith sample ((x_i,y_i)) in (D), where (x_i=(x_{i,1},x_{i,2})).

    Output

    For each test case, output a single line containing the answer: “Infinite loop!” or “Successful!”.

    Sample Input

    3
    2
    1 1 1
    2 0 -1
    4
    0 0 1
    2 0 -1
    1 1 1
    1 -1 -1
    6
    0 0 1
    2 0 -1
    1 1 1
    1 -1 -1
    1 0 1
    0 1 -1
    

    Sample Output

    Successful!
    Successful!
    Infinite loop!
    

    Solution

    题意

    给出两类点的坐标,问能否用一条直线将两类点分开。

    题解

    题目看懂了就很好做了。

    就是分别对两类点求凸包,然后判断两个凸包是否相交。若不相交,则能够用一条直线分开两类点,否则不能。

    其实就是判断凸包是否相交的模板题。

    类似的题目有:

    Code

    #include <bits/stdc++.h>
    using namespace std;
    const double eps = 1e-8;
    const double pi = acos(-1.0);
    class Point {
    public:
        double x, y;
        Point(double x = 0, double y = 0) : x(x), y(y) {}
        Point operator+(Point a) {
            return Point(a.x + x, a.y + y);
        }
        Point operator-(Point a) {
            return Point(x - a.x, y - a.y);
        }
        bool operator<(const Point &a) const {
            if (x == a.x)
                return y < a.y;
            return x < a.x;
        }
        bool operator==(const Point &a) const {
            if (fabs(x - a.x) < eps && fabs(y - a.y) < eps)
                return 1;
            return 0;
        }
        double length() {
            return sqrt(x * x + y * y);
        }
    };
    
    typedef Point Vector;
    
    double cross(Vector a, Vector b) {
        return a.x * b.y - a.y * b.x;
    }
    
    double dot(Vector a, Vector b) {
        return a.x * b.x + a.y * b.y;
    }
    
    bool isclock(Point p0, Point p1, Point p2) {
        Vector a = p1 - p0;
        Vector b = p2 - p0;
        if (cross(a, b) < -eps)
            return true;
        return false;
    }
    
    double getDistance(Point a, Point b) {
        return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
    }
    
    typedef vector<Point> Polygon;
    Polygon Andrew(Polygon s) {
        Polygon u, l;
        if(s.size() < 3) return s;
        sort(s.begin(), s.end());
        u.push_back(s[0]);
        u.push_back(s[1]);
        l.push_back(s[s.size() - 1]);
        l.push_back(s[s.size() - 2]);
        for(int i = 2 ; i < s.size() ; ++i) {
            for(int n = u.size() ; n >= 2 && !isclock(u[n - 2], u[n - 1], s[i]); --n) {
                u.pop_back();
            }
            u.push_back(s[i]);
        }
        for(int i = s.size() - 3 ; i >= 0 ; --i) {
            for(int n = l.size() ; n >=2 && !isclock(l[n-2],l[n-1],s[i]); --n) {
                l.pop_back();
            }
            l.push_back(s[i]);
        }
        for(int i = 1 ; i < u.size() - 1 ; i++) l.push_back(u[i]);
        return l;
    }
    
    int dcmp(double x)  {
        if (fabs(x) <= eps)
            return 0;
        return x > 0 ? 1 : -1;
    }
    
    // 判断点在线段上
    bool OnSegment(Point p, Point a1, Point a2) {
        return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0;
    }
    
    // 判断线段相交
    bool Intersection(Point a1, Point a2, Point b1, Point b2) {
        double c1 = cross(a2 - a1, b1 - a1), c2 = cross(a2 - a1, b2 - a1),
                c3 = cross(b2 - b1, a1 - b1), c4 = cross(b2 - b1, a2 - b1);
        return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
    }
    
    // 判断点在凸包内
    int isPointInPolygon(Point p, vector<Point> s) {
        int wn = 0, cc = s.size();
        for (int i = 0; i < cc; i++) {
            Point p1 = s[i];
            Point p2 = s[(i + 1) % cc];
            if (p1 == p || p2 == p || OnSegment(p, p1, p2)) return -1;
            int k = dcmp(cross(p2 - p1, p - p1));
            int d1 = dcmp(p1.y - p.y);
            int d2 = dcmp(p2.y - p.y);
            if (k > 0 && d1 <= 0 && d2 > 0) wn++;
            if (k < 0 && d2 <= 0 && d1 > 0) wn--;
        }
        if (wn != 0) return 1;
        return 0;
    }
    
    void solve(Polygon s1, Polygon s2) {
        int c1 = s1.size(), c2 = s2.size();
        for(int i = 0; i < c1; ++i) {
            if(isPointInPolygon(s1[i], s2)) {
                printf("Infinite loop!
    ");
                return;
            }
        }
        for(int i = 0; i < c2; ++i) {
            if(isPointInPolygon(s2[i], s1)) {
                printf("Infinite loop!
    ");
                return;
            }
        }
        for (int i = 0; i < c1; i++) {
            for (int j = 0; j < c2; j++) {
                if (Intersection(s1[i], s1[(i + 1) % c1], s2[j], s2[(j + 1) % c2])) {
                    printf("Infinite loop!
    ");
                    return;
                }
            }
        }
        printf("Successful!
    ");
    }
    
    int main() {
        int T;
        cin >> T;
        while (T--) {
            int n;
            scanf("%d", &n);
            Polygon s1, s2;
            for (int i = 0; i < n; ++i) {
                double x1, x2, y;
                scanf("%lf%lf%lf", &x1, &x2, &y);
                if(y == 1) {
                    s1.push_back(Point(x1, x2));
                } else {
                    s2.push_back(Point(x1, x2));
                }
            }
            if(n == 1) {
                printf("Successful!
    ");
                continue;
            }
            if(s1.size()) s1 = Andrew(s1);
            if(s2.size()) s2 = Andrew(s2);
            solve(s1, s2);
        }
        return 0;
    }
    
  • 相关阅读:
    api接口对于客户端的身份认证方式以及安全措施
    学SpringMVC
    Android用户界面设计:框架布局(转)
    Android与服务器端数据交互(转)
    用android LinearLayout和RelativeLayout实现精确布局(转)
    Android 源代码结构(转)
    Android开发在路上:少去踩坑,多走捷径(转)
    Map.EntrySet的使用方法
    利用JasperReport+iReport进行Web报表开发
    eclipse3.2 汉化 汉化包下载
  • 原文地址:https://www.cnblogs.com/wulitaotao/p/11391826.html
Copyright © 2020-2023  润新知