• Relay外部库使用


    Relay外部库使用

    本文介绍如何将cuDNN或cuBLAS等外部库与Relay一起使用。

    Relay内部使用TVM生成目标特定的代码。例如,使用cuda后端,TVM为用户提供的网络中的所有层生成cuda内核。有时将各种供应商开发的外部库合并到Relay中也很有帮助。幸运的是,TVM具有透明地调用这些库的机制。对于Relay用户,要做的只是适当地设置目标字符串。

    在可以使用Relay的外部库之前,TVM必须与要使用的库一起构建。例如,要使用cuDNN,需要启用cmake / config.cmake中的USE_CUDNN选项,并在必要时指定cuDNN include和库目录。

    首先,导入Relay和TVM。

    import tvm

    from tvm import te

    import numpy as np

    from tvm.contrib import graph_runtime as runtime

    from tvm import relay

    from tvm.relay import testing

    import tvm.testing

    创建一个简单的网络

    创建一个非常简单的网络进行演示。由卷积,批处理归一化和ReLU激活组成。

    out_channels = 16

    batch_size = 1

     

    data = relay.var("data", relay.TensorType((batch_size, 3, 224, 224), "float32"))

    weight = relay.var("weight")

    bn_gamma = relay.var("bn_gamma")

    bn_beta = relay.var("bn_beta")

    bn_mmean = relay.var("bn_mean")

    bn_mvar = relay.var("bn_var")

     

    simple_net = relay.nn.conv2d(

        data=data, weight=weight, kernel_size=(3, 3), channels=out_channels, padding=(1, 1)

    )

    simple_net = relay.nn.batch_norm(simple_net, bn_gamma, bn_beta, bn_mmean, bn_mvar)[0]

    simple_net = relay.nn.relu(simple_net)

    simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net)

     

    data_shape = (batch_size, 3, 224, 224)

    net, params = testing.create_workload(simple_net)

    使用cuda后端构建并运行

    像往常一样,使用cuda后端构建并运行此网络。通过将日志记录级别设置为DEBUG,Relay图编译的结果将作为伪代码转储。

    import logging

     

    logging.basicConfig(level=logging.DEBUG)  # to dump TVM IR after fusion

     

    target = "cuda"

    lib = relay.build_module.build(net, target, params=params)

     

    ctx = tvm.context(target, 0)

    data = np.random.uniform(-1, 1, size=data_shape).astype("float32")

    module = runtime.GraphModule(lib["default"](ctx))

    module.set_input("data", data)

    module.run()

    out_shape = (batch_size, out_channels, 224, 224)

    out = module.get_output(0, tvm.nd.empty(out_shape))

    out_cuda = out.asnumpy()

    生成的伪代码应如下所示。注意如何将偏差添加,批处理规范化和ReLU激活融合到卷积内核中。TVM根据此表示生成单个融合内核。

    produce tensor {

      // attr [iter_var(blockIdx.z, , blockIdx.z)] thread_extent = 1

      // attr [compute] storage_scope = "local"

      allocate compute[float32 * 32]

      // attr [pad_temp.shared] storage_scope = "shared"

      allocate pad_temp.shared[float32 * 180]

      // attr [placeholder.shared] storage_scope = "shared"

      allocate placeholder.shared[float32 * 144]

      // attr [iter_var(blockIdx.y, , blockIdx.y)] thread_extent = 28

      // attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = 14

      // attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 4

      // attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1

      // attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 16

      produce compute {

        compute[0] = 0.000000f

        compute[1] = 0.000000f

        compute[2] = 0.000000f

        compute[3] = 0.000000f

        compute[4] = 0.000000f

        compute[5] = 0.000000f

        compute[6] = 0.000000f

        compute[7] = 0.000000f

        compute[8] = 0.000000f

        compute[9] = 0.000000f

        compute[10] = 0.000000f

        compute[11] = 0.000000f

        compute[12] = 0.000000f

        compute[13] = 0.000000f

        compute[14] = 0.000000f

        compute[15] = 0.000000f

        compute[16] = 0.000000f

        compute[17] = 0.000000f

        compute[18] = 0.000000f

        compute[19] = 0.000000f

        compute[20] = 0.000000f

        compute[21] = 0.000000f

        compute[22] = 0.000000f

        compute[23] = 0.000000f

        compute[24] = 0.000000f

        compute[25] = 0.000000f

        compute[26] = 0.000000f

        compute[27] = 0.000000f

        compute[28] = 0.000000f

        compute[29] = 0.000000f

        compute[30] = 0.000000f

        compute[31] = 0.000000f

        for (rc.outer, 0, 3) {

          produce pad_temp.shared {

            // attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 4

            // attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1

            // attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 16

            if (likely(((threadIdx.z*15) < (60 - threadIdx.x)))) {

              if (likely((threadIdx.x < 15))) {

                pad_temp.shared[(((((threadIdx.z*15) + threadIdx.x)/60)*180) + ((((((threadIdx.z*15) + threadIdx.x)/6) % 10)*18) + ((((threadIdx.z*3) + threadIdx.x)*3) % 18)))] = tvm_if_then_else((((((1 - ((((threadIdx.z*15) + threadIdx.x)/6) % 10)) <= (blockIdx.y*8)) && ((blockIdx.y*8) < (225 - ((((threadIdx.z*15) + threadIdx.x)/6) % 10)))) && ((1 - ((((threadIdx.z*3) + threadIdx.x)*3) % 18)) <= (blockIdx.x*16))) && ((blockIdx.x*16) < (225 - ((((threadIdx.z*3) + threadIdx.x)*3) % 18)))), placeholder[((((((((blockIdx.y*112) + blockIdx.x) + (rc.outer*3136)) + ((((threadIdx.z*15) + threadIdx.x)/60)*9408))*16) + ((((threadIdx.z*3) + threadIdx.x)*3) % 18)) + (((((threadIdx.z*15) + threadIdx.x)/6) % 10)*224)) + -225)], 0.000000f)

                pad_temp.shared[(((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/180)*180) + ((((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)*18) + (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)))] = tvm_if_then_else((((((1 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)) <= (blockIdx.y*8)) && ((blockIdx.y*8) < (225 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)))) && ((1 - (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)) <= (blockIdx.x*16))) && ((blockIdx.x*16) < (225 - (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)))), placeholder[((((((((blockIdx.y*112) + blockIdx.x) + (rc.outer*3136)) + ((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/180)*9408))*16) + (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)) + (((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)*224)) + -225)], 0.000000f)

                pad_temp.shared[(((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/180)*180) + ((((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)*18) + (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)))] = tvm_if_then_else((((((1 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)) <= (blockIdx.y*8)) && ((blockIdx.y*8) < (225 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)))) && ((1 - (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)) <= (blockIdx.x*16))) && ((blockIdx.x*16) < (225 - (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)))), placeholder[((((((((blockIdx.y*112) + blockIdx.x) + (rc.outer*3136)) + ((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/180)*9408))*16) + (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)) + (((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)*224)) + -225)], 0.000000f)

              }

            }

          }

          produce placeholder.shared {

            // attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 4

            // attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1

            // attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 16

            if (likely(((threadIdx.z*4) < (16 - (threadIdx.x/3))))) {

              if (likely(((threadIdx.z*12) < (48 - threadIdx.x)))) {

                if (likely((threadIdx.x < 12))) {

                  placeholder.shared[(((((threadIdx.z*4) + (threadIdx.x/3))*3) + (threadIdx.x % 3))*3)] = placeholder[(((((rc.outer + (threadIdx.z*12)) + ((threadIdx.x/3)*3))*3) + (threadIdx.x % 3))*3)]

                  placeholder.shared[((((((threadIdx.z*4) + (threadIdx.x/3))*3) + (threadIdx.x % 3))*3) + 1)] = placeholder[((((((rc.outer + (threadIdx.z*12)) + ((threadIdx.x/3)*3))*3) + (threadIdx.x % 3))*3) + 1)]

                  placeholder.shared[((((((threadIdx.z*4) + (threadIdx.x/3))*3) + (threadIdx.x % 3))*3) + 2)] = placeholder[((((((rc.outer + (threadIdx.z*12)) + ((threadIdx.x/3)*3))*3) + (threadIdx.x % 3))*3) + 2)]

                }

              }

            }

          }

          compute[0] = (compute[0] + (pad_temp.shared[threadIdx.x]*placeholder.shared[(threadIdx.z*36)]))

          compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[(threadIdx.z*36)]))

          compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[(threadIdx.z*36)]))

          compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[(threadIdx.z*36)]))

          compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[(threadIdx.z*36)]))

          compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[(threadIdx.z*36)]))

          compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[(threadIdx.z*36)]))

          compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[(threadIdx.z*36)]))

          compute[8] = (compute[8] + (pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36) + 9)]))

          compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 9)]))

          compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 9)]))

          compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 9)]))

          compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 9)]))

          compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 9)]))

          compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 9)]))

          compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 9)]))

          compute[16] = (compute[16] + (pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36) + 18)]))

          compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 18)]))

          compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 18)]))

          compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 18)]))

          compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 18)]))

          compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 18)]))

          compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 18)]))

          compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 18)]))

          compute[24] = (compute[24] + (pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36) + 27)]))

          compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 27)]))

          compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 27)]))

          compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 27)]))

          compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 27)]))

          compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 27)]))

          compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 27)]))

          compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 27)]))

          compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 1)]))

          compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 1)]))

          compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 1)]))

          compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 1)]))

          compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 1)]))

          compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 1)]))

          compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 1)]))

          compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 1)]))

          compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 10)]))

          compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 10)]))

          compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 10)]))

          compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 10)]))

          compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 10)]))

          compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 10)]))

          compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 10)]))

          compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 10)]))

          compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 19)]))

          compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 19)]))

          compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 19)]))

          compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 19)]))

          compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 19)]))

          compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 19)]))

          compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 19)]))

          compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 19)]))

          compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 28)]))

          compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 28)]))

          compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 28)]))

          compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 28)]))

          compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 28)]))

          compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 28)]))

          compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 28)]))

          compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 28)]))

          compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 2)]))

          compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 2)]))

          compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 2)]))

          compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 2)]))

          compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 2)]))

          compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 2)]))

          compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 2)]))

          compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 2)]))

          compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 11)]))

          compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 11)]))

          compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 11)]))

          compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 11)]))

          compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 11)]))

          compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 11)]))

          compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 11)]))

          compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 11)]))

          compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 20)]))

          compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 20)]))

          compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 20)]))

          compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 20)]))

          compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 20)]))

          compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 20)]))

          compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 20)]))

          compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 20)]))

          compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 29)]))

          compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 29)]))

          compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 29)]))

          compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 29)]))

          compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 29)]))

          compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 29)]))

          compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 29)]))

          compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 29)]))

          compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 3)]))

          compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 3)]))

          compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 3)]))

          compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 3)]))

          compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 3)]))

          compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 3)]))

          compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 3)]))

          compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 3)]))

          compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 12)]))

          compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 12)]))

          compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 12)]))

          compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 12)]))

          compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 12)]))

          compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 12)]))

          compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 12)]))

          compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 12)]))

          compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 21)]))

          compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 21)]))

          compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 21)]))

          compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 21)]))

          compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 21)]))

          compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 21)]))

          compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 21)]))

          compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 21)]))

          compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 30)]))

          compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 30)]))

          compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 30)]))

          compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 30)]))

          compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 30)]))

          compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 30)]))

          compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 30)]))

          compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 30)]))

          compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 4)]))

          compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 4)]))

          compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 4)]))

          compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 4)]))

          compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 4)]))

          compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 4)]))

          compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 4)]))

          compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 4)]))

          compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 13)]))

          compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 13)]))

          compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 13)]))

          compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 13)]))

          compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 13)]))

          compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 13)]))

          compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 13)]))

          compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 13)]))

          compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 22)]))

          compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 22)]))

          compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 22)]))

          compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 22)]))

          compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 22)]))

          compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 22)]))

          compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 22)]))

          compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 22)]))

          compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 31)]))

          compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 31)]))

          compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 31)]))

          compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 31)]))

          compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 31)]))

          compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 31)]))

          compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 31)]))

          compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 31)]))

          compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 5)]))

          compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 5)]))

          compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 5)]))

          compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 5)]))

          compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 5)]))

          compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 5)]))

          compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 5)]))

          compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 5)]))

          compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 14)]))

          compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 14)]))

          compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 14)]))

          compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 14)]))

          compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 14)]))

          compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 14)]))

          compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 14)]))

          compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 14)]))

          compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 23)]))

          compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 23)]))

          compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 23)]))

          compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 23)]))

          compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 23)]))

          compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 23)]))

          compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 23)]))

          compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 23)]))

          compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 32)]))

          compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 32)]))

          compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 32)]))

          compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 32)]))

          compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 32)]))

          compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 32)]))

          compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 32)]))

          compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 32)]))

          compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 6)]))

          compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 6)]))

          compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 6)]))

          compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 6)]))

          compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 6)]))

          compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 6)]))

          compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 6)]))

          compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 6)]))

          compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 15)]))

          compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 15)]))

          compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 15)]))

          compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 15)]))

          compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 15)]))

          compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 15)]))

          compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 15)]))

          compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 15)]))

          compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 24)]))

          compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 24)]))

          compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 24)]))

          compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 24)]))

          compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 24)]))

          compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 24)]))

          compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 24)]))

          compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 24)]))

          compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 33)]))

          compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 33)]))

          compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 33)]))

          compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 33)]))

          compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 33)]))

          compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 33)]))

          compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 33)]))

          compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 33)]))

          compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 7)]))

          compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 7)]))

          compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 7)]))

          compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 7)]))

          compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 7)]))

          compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 7)]))

          compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 7)]))

          compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 7)]))

          compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 16)]))

          compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 16)]))

          compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 16)]))

          compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 16)]))

          compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 16)]))

          compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 16)]))

          compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 16)]))

          compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 16)]))

          compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 25)]))

          compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 25)]))

          compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 25)]))

          compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 25)]))

          compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 25)]))

          compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 25)]))

          compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 25)]))

          compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 25)]))

          compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 34)]))

          compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 34)]))

          compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 34)]))

          compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 34)]))

          compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 34)]))

          compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 34)]))

          compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 34)]))

          compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 34)]))

          compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 8)]))

          compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 8)]))

          compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 8)]))

          compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 8)]))

          compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 8)]))

          compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 8)]))

          compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 8)]))

          compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 8)]))

          compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 17)]))

          compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 17)]))

          compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 17)]))

          compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 17)]))

          compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 17)]))

          compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 17)]))

          compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 17)]))

          compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 17)]))

          compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 26)]))

          compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 26)]))

          compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 26)]))

          compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 26)]))

          compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 26)]))

          compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 26)]))

          compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 26)]))

          compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 26)]))

          compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 35)]))

          compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 35)]))

          compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 35)]))

          compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 35)]))

          compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 35)]))

          compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 35)]))

          compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 35)]))

          compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 35)]))

        }

      }

      tensor[(((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x)] = max(((compute[0]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 224)] = max(((compute[1]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 448)] = max(((compute[2]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 672)] = max(((compute[3]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 896)] = max(((compute[4]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 1120)] = max(((compute[5]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 1344)] = max(((compute[6]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 1568)] = max(((compute[7]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50176)] = max(((compute[8]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50400)] = max(((compute[9]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50624)] = max(((compute[10]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50848)] = max(((compute[11]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51072)] = max(((compute[12]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51296)] = max(((compute[13]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51520)] = max(((compute[14]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51744)] = max(((compute[15]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 100352)] = max(((compute[16]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 100576)] = max(((compute[17]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 100800)] = max(((compute[18]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101024)] = max(((compute[19]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101248)] = max(((compute[20]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101472)] = max(((compute[21]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101696)] = max(((compute[22]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101920)] = max(((compute[23]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 150528)] = max(((compute[24]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 150752)] = max(((compute[25]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 150976)] = max(((compute[26]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151200)] = max(((compute[27]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151424)] = max(((compute[28]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151648)] = max(((compute[29]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151872)] = max(((compute[30]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

      tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 152096)] = max(((compute[31]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

    }

    将cuDNN用于卷积层

    可以使用cuDNN将卷积内核替换为cuDNN。将选项“ -libs = cudnn”附加到目标字符串。

    net, params = testing.create_workload(simple_net)

    target = "cuda -libs=cudnn"  # use cudnn for convolution

    lib = relay.build_module.build(net, target, params=params)

     

    ctx = tvm.context(target, 0)

    data = np.random.uniform(-1, 1, size=data_shape).astype("float32")

    module = runtime.GraphModule(lib["default"](ctx))

    module.set_input("data", data)

    module.run()

    out_shape = (batch_size, out_channels, 224, 224)

    out = module.get_output(0, tvm.nd.empty(out_shape))

    out_cudnn = out.asnumpy()

    如果使用cuDNN,则Relay无法将卷积与其后的图层融合在一起。层融合发生在TVM内部表示(IR)级别。Relay将外部库视为黑匣子,无法与TVM IR融合。

    下面的伪代码显示cuDNN卷积+偏差加+批处理范数+ ReLU分为两个计算阶段,一个阶段用于cuDNN调用,另一个阶段用于其余操作。

    // attr [y] storage_scope = "global"

    allocate y[float32 * 802816]

    produce y {

      // attr [0] extern_scope = 0

      tvm_call_packed("tvm.contrib.cudnn.conv2d.forward", 1, 0, 1, 1, 1, 1, 1, 1, 1, tvm_stack_make_array(placeholder, tvm_stack_make_shape(1, 3, 224, 224), 0, 4, 0.000000f, 0), tvm_stack_make_array(placeholder, tvm_stack_make_shape(16, 3, 3, 3), 0, 4, 0.000000f, 0), tvm_stack_make_array(y, tvm_stack_make_shape(1, 16, 224, 224), 0, 4, 0.000000f, 0))

    }

    produce tensor {

      // attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = 256

      // attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 512

      for (ax0.ax1.fused.ax2.fused.ax3.fused.outer, 0, 7) {

        if (likely(((blockIdx.x*512) < ((802816 - (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072)) - threadIdx.x)))) {

          tensor[(((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/802816)*802816) + (((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/224) % 224)*224) + ((((blockIdx.x*64) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*32)) % 224))) + ((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)*50176))] = max(((y[(((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/802816)*802816) + (((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/224) % 224)*224) + ((((blockIdx.x*64) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*32)) % 224))) + ((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)*50176))]*placeholder[(((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)]) + placeholder[(((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)]), 0.000000f)

        }

      }

    }

    验证结果

    可以检查两次运行的结果是否匹配。

    tvm.testing.assert_allclose(out_cuda, out_cudnn, rtol=1e-5)

    结论

    本文介绍了cuDNN与Relay的用法。也支持cuBLAS。如果启用了cuBLAS,将在完全连接的层(relay.dense)中使用。要使用cuBLAS,将目标字符串设置为“ cuda -libs = cublas”。可以将cuDNN和cuBLAS与“ cuda -libs = cudnn,cublas”一起使用。

    对于ROCm后端,支持MIOpen和rocBLAS。可以通过目标“ rocm -libs = miopen,rocblas”启用。

    能够使用外部库是很棒的,需要牢记一些注意事项。

    首先,使用外部库,可能会限制对TVM和Relay的使用。例如,MIOpen目前仅支持NCHW布局和fp32数据类型,不能在TVM中使用其他布局或数据类型。

    其次,更重要的是,外部库限制了在图形编译过程中算子融合的可能性,如上所述。TVM和Relay旨在通过联合算子级别和图形级别优化来在各种硬件上实现最佳性能。应该继续为TVM和Relay开发更好的优化方法,在必要时使用外部库作为回退到现有实现的一种好方法。

    人工智能芯片与自动驾驶
  • 相关阅读:
    VSS部署手册
    正则表达式学习(二)
    完全卸载oracle11g步骤
    c#中 命令copy 已退出,返回值为1
    Windows 64位下装Oracle 11g,PLSQL Developer的配置问题,数据库处显示为空白的解决方案
    ora01033和ora12560错误的解决方案
    C#DLL加密保护
    ocslive.conf
    ASP.NET中文乱码问题的解决
    Creating a very simple autorestore USB stick clonezilla
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/14584788.html
Copyright © 2020-2023  润新知