• 使用ONNX将模型转移至Caffe2和移动端


    使用ONNX将模型转移至Caffe2和移动端

    本文介绍如何使用 ONNX 将 PyTorch 中定义的模型转换为 ONNX 格式,然后将其加载到 Caffe2 中。一旦进入 Caffe2, 就可以运行模型来仔细检查它是否正确导出,然后展示了如何使用 Caffe2 功能(如移动导出器)在移动设备上执行模型。

    需要安装onnx和Caffe2。 可以使用pip install onnx来获取 onnx。

    注意:需要 PyTorch master 分支,可以按照这里说明进行安装。

    1.引入模型

    # 一些包的导入

    import io

    import numpy as np

     

    from torch import nn

    import torch.utils.model_zoo as model_zoo

    import torch.onnx

    1.1 SuperResolution模型

    超分辨率是一种提高图像、视频分辨率的方法,广泛用于图像处理或视频剪辑。首先使用带有虚拟输入的小型超分辨率模型。

    首先,让在 PyTorch 中创建一个SuperResolution模型。这个模型 直接来自 PyTorch 的例子,没有修改:

    # PyTorch中定义的Super Resolution模型

    import torch.nn as nn

    import torch.nn.init as init

     

    class SuperResolutionNet(nn.Module):

        def __init__(self, upscale_factor, inplace=False):

            super(SuperResolutionNet, self).__init__()

     

            self.relu = nn.ReLU(inplace=inplace)

            self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))

            self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))

            self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))

            self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))

            self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

     

            self._initialize_weights()

     

        def forward(self, x):

            x = self.relu(self.conv1(x))

            x = self.relu(self.conv2(x))

            x = self.relu(self.conv3(x))

            x = self.pixel_shuffle(self.conv4(x))

            return x

     

        def _initialize_weights(self):

            init.orthogonal_(self.conv1.weight, init.calculate_gain('relu'))

            init.orthogonal_(self.conv2.weight, init.calculate_gain('relu'))

            init.orthogonal_(self.conv3.weight, init.calculate_gain('relu'))

            init.orthogonal_(self.conv4.weight)

     

    # 使用上面模型定义,创建super-resolution模型

    torch_model = SuperResolutionNet(upscale_factor=3)

    1.2 训练模型

    通常,现在会训练这个模型; 但是,将下载一些预先训练的权重。请注意,此模型未经过充分训练来获得良好的准确性,此处 仅用于演示目的。

    # 加载预先训练好的模型权重

    del_url = 'https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth'

    batch_size = 1    # just a random number

     

    # 使用预训练的权重初始化模型

    map_location = lambda storage, loc: storage

    if torch.cuda.is_available():

        map_location = None

    torch_model.load_state_dict(model_zoo.load_url(model_url, map_location=map_location))

     

    # 将训练模式设置为falsesince we will only run the forward pass.

    torch_model.train(False)

    1.3 导出模型

    在 PyTorch 中通过跟踪工作导出模型。要导出模型,调用torch.onnx._export()函数。这将执行模型,记录运算符用于计算输出的轨迹。 因为_export运行模型,需要提供输入张量x。这个张量的值并不重要; 它可以是图像或随机张量,只要它大小是正确的。

    要了解有关PyTorch导出界面的更多详细信息,请查看torch.onnx documentation文档。

    # 输入模型

    x = torch.randn(batch_size, 1, 224, 224, requires_grad=True)

     

    # 导出模型

    torch_out = torch.onnx._export(torch_model,             # model being run

                                   x,                       # model input (or a tuple for multiple inputs)

                                   "super_resolution.onnx", # where to save the model (can be a file or file-like object)

                                   export_params=True)      # store the trained parameter weights inside the model file

    torch_out是执行模型后的输出。通常可以忽略此输出,但在这里将使用它来验证导出的模型在Caffe2中运行时是否计算出相同的值。

    1.4 采用ONNX表示模型并在Caffe2中使用

    现在让采用 ONNX 表示并在 Caffe2 中使用它。这部分通常可以在一个单独的进程中或在另一台机器上完成,但将在同一个进程中继续, 以便可以验证 Caffe2 和 PyTorch 是否为网络计算出相同的值:

    import onnx

    import caffe2.python.onnx.backend as onnx_caffe2_backend

     

    #加载ONNX ModelProto对象。模型是一个标准的Python protobuf对象

    model = onnx.load("super_resolution.onnx")

     

    # 为执行模型准备caffe2后端,将ONNX模型转换为可以执行它的Caffe2 NetDef。

    # 其他ONNX后端,如CNTK的后端即将推出。

    prepared_backend = onnx_caffe2_backend.prepare(model)

     

    # 在Caffe2中运行模型

     

    # 构造从输入名称到Tensor数据的映射。

    # 模型图形本身包含输入图像之后所有权重参数的输入。由于权重已经嵌入,只需要传递输入图像。

    # 设置第一个输入。

    W = {model.graph.input[0].name: x.data.numpy()}

     

    # 运行Caffe2 net:

    c2_out = prepared_backend.run(W)[0]

     

    # 验证数字正确性,最多3位小数

    np.testing.assert_almost_equal(torch_out.data.cpu().numpy(), c2_out, decimal=3)

     

    print("Exported model has been executed on Caffe2 backend, and the result looks good!")

    应该看到 PyTorch 和 Caffe2 的输出在数字上匹配最多3位小数。作为旁注,如果不匹配则存在 Caffe2 和 PyTorch 中的运算符以 不同方式实现的问题,请在这种情况下与联系。

    2.使用ONNX转换SRResNET

    使用与上述相同的过程,参考文章中提出的超分辨率转移了一个有趣的新模型“SRResNet” (感谢Twitter上的作者为本文的目的提供了代码和预训练参数)。可在此处 找到模型定义和预训练模型。下面是 SRResNet 模型的输入、输出。 

    3.在移动设备上运行模型

    到目前为止,已经从 PyTorch 导出了一个模型,并展示了如何加载它并在 Caffe2 中运行它。现在模型已加载到 Caffe2 中,可以 将其转换为适合在移动设备上运行的格式。

    将使用 Caffe2 的mobile_exporter 生成可在移动设备上运行的两个模型protobufs。第一个用于使用正确的权重初始化网络,第二个实际运行执行模型。在本文的其余部分, 将继续使用小型超分辨率模型。

    # 从内部表示中提取工作空间和模型原型

    c2_workspace = prepared_backend.workspace

    c2_model = prepared_backend.predict_net

     

    # 现在导入caffe2的`mobile_exporter`

    from caffe2.python.predictor import mobile_exporter

     

    # 调用Export来获取predict_net,init_net。 在移动设备上运行时需要这些网络

    init_net, predict_net = mobile_exporter.Export(c2_workspace, c2_model, c2_model.external_input)

     

    # 还将init_net和predict_net保存到稍后将用于在移动设备上运行的文件中

    with open('init_net.pb', "wb") as fopen:

        fopen.write(init_net.SerializeToString())

    with open('predict_net.pb', "wb") as fopen:

        fopen.write(predict_net.SerializeToString())

    init_net具有模型参数和嵌入在其中的模型输入,predict_net将用于指导运行时的init_net执行。在本文中,将使用上面生成 的init_net和predict_net,并在正常的 Caffe2 后端和移动设备中运行,并验证两次运行中生成的输出高分辨率猫咪图像是否相同。

    在本文中,将使用广泛使用的著名猫咪图像,如下所示:

     

    # 一些必备的导入包

    from caffe2.proto import caffe2_pb2

    from caffe2.python import core, net_drawer, net_printer, visualize, workspace, utils

     

    import numpy as np

    import os

    import subprocess

    from PIL import Image

    from matplotlib import pyplot

    from skimage import io, transform

    3.1 加载图像并预处理

    首先,让加载图像,使用标准的skimage python库对其进行预处理。请注意,此预处理是处理用于训练/测试神经网络的数据的标准做法。

    # 加载图像

    img_in = io.imread("./_static/img/cat.jpg")

     

    # 设置图片分辨率为 224x224

    img = transform.resize(img_in, [224, 224])

     

    # 保存好设置的图片作为模型的输入

    io.imsave("./_static/img/cat_224x224.jpg", img)

    3.2 在Caffe2运行并输出

    拍摄调整大小的猫图像并在 Caffe2 后端运行超分辨率模型并保存输出图像。这里的图像处理步骤已经从 PyTorch 实 现的超分辨率模型中采用。

    # 加载设置好的图片并更改为YCbCr的格式

    img = Image.open("./_static/img/cat_224x224.jpg")

    img_ycbcr = img.convert('YCbCr')

    img_y, img_cb, img_cr = img_ycbcr.split()

     

    # 让运行上面生成的移动网络,以便正确初始化caffe2工作区

    workspace.RunNetOnce(init_net)

    workspace.RunNetOnce(predict_net)

     

    # Caffe2有一个很好的net_printer能够检查网络的外观

    # 并确定的输入和输出blob名称是什么。

    print(net_printer.to_string(predict_net))

    从上面的输出中,可以看到输入名为“9”,输出名为“27”(将数字作为blob名称有点奇怪,但这是因为跟踪JIT为模型生成了编 号条目)。

    # 现在,让传递调整大小的猫图像以供模型处理。

    workspace.FeedBlob("9", np.array(img_y)[np.newaxis, np.newaxis, :, :].astype(np.float32))

     

    # 运行predict_net以获取模型输出

    workspace.RunNetOnce(predict_net)

     

    # 现在让得到模型输出blob

    img_out = workspace.FetchBlob("27")

    现在,将在这里回顾PyTorch实现超分辨率模型的后处理步骤,以构建最终输出图像并保存图像。

    img_out_y = Image.fromarray(np.uint8((img_out[0, 0]).clip(0, 255)), mode='L')

     

    # 获取输出图像遵循PyTorch实现的后处理步骤

    final_img = Image.merge(

        "YCbCr", [

            img_out_y,

            img_cb.resize(img_out_y.size, Image.BICUBIC),

            img_cr.resize(img_out_y.size, Image.BICUBIC),

        ]).convert("RGB")

     

    # 保存图像,将其与移动设备的输出图像进行比较

    final_img.save("./_static/img/cat_superres.jpg")

    3.3 在移动端上执行模型

    已经完成了在纯Caffe2后端运行的移动网络,在Android设备上执行该模型并获取模型输出。

    注意:对于 Android 开发,需要adb shell,以下部分将无法运行。

    在在移动设备上运行模型的第一步中,把基于移动设备的本机速度测试基准二进制文件推送到 adb 。这个二进制文件可以在移动设备 上执行模型,也可以导出稍后可以检索的模型输出。二进制文件可在此处 获得。要构建二进制文件,请按照此处的说明执行build_android.sh脚本。

    注意:需要已经安装了ANDROID_NDK,并且设置环境变量ANDROID_NDK=path to ndk root。

    # 让先把一堆东西推到adb,指定二进制的路径

    CAFFE2_MOBILE_BINARY = ('caffe2/binaries/speed_benchmark')

     

    # 已经在上面的步骤中保存了`init_net`和`proto_net`,现在使用。

    # 推送二进制文件和模型protos

    os.system('adb push ' + CAFFE2_MOBILE_BINARY + ' /data/local/tmp/')

    os.system('adb push init_net.pb /data/local/tmp')

    os.system('adb push predict_net.pb /data/local/tmp')

     

    # 让将输入图像blob序列化为blob proto,然后将其发送到移动设备以供执行。

    with open("input.blobproto", "wb") as fid:

        fid.write(workspace.SerializeBlob("9"))

     

    # 将输入图像blob推送到adb

    os.system('adb push input.blobproto /data/local/tmp/')

     

    # 现在在移动设备上运行网络,查看`speed_benchmark --help`,了解各种选项的含义

    os.system(

        'adb shell /data/local/tmp/speed_benchmark '                     # binary to execute

        '--init_net=/data/local/tmp/super_resolution_mobile_init.pb '    # mobile init_net

        '--net=/data/local/tmp/super_resolution_mobile_predict.pb '      # mobile predict_net

        '--input=9 '                                                     # name of our input image blob

        '--input_file=/data/local/tmp/input.blobproto '                  # serialized input image

        '--output_folder=/data/local/tmp '                               # destination folder for saving mobile output

        '--output=27,9 '                                                 # output blobs we are interested in

        '--iter=1 '                                                      # number of net iterations to execute

        '--caffe2_log_level=0 '

    )

     

    # 从adb获取模型输出并保存到文件

    os.system('adb pull /data/local/tmp/27 ./output.blobproto')

     

     

    # 可以使用与之前相同的步骤恢复输出内容并对模型进行后处理

    blob_proto = caffe2_pb2.BlobProto()

    blob_proto.ParseFromString(open('./output.blobproto').read())

    img_out = utils.Caffe2TensorToNumpyArray(blob_proto.tensor)

    img_out_y = Image.fromarray(np.uint8((img_out[0,0]).clip(0, 255)), mode='L')

    final_img = Image.merge(

        "YCbCr", [

            img_out_y,

            img_cb.resize(img_out_y.size, Image.BICUBIC),

            img_cr.resize(img_out_y.size, Image.BICUBIC),

        ]).convert("RGB")

    final_img.save("./_static/img/cat_superres_mobile.jpg")

    现在,可以比较图像 cat_superres.jpg(来自纯caffe2后端执行的模型输出)和 cat_superres_mobile.jpg(来自移动执行的模型输出), 并看到两个图像看起来相同。如果看起来不一样,那么在移动设备上执行会出现问题,在这种情况下,请联系Caffe2社区。应该期望看

     

    使用上述步骤,可以轻松地在移动设备上部署模型。 另外,有关caffe2移动后端的更多信息,请查看caffe2-android-demo

     

    人工智能芯片与自动驾驶
  • 相关阅读:
    VisionPro CogCreateCircleTool工具
    VisionPro CogPDF417Tool工具
    VisionPro CogBarcodeTool工具
    VisionPro Cog2DSymbolVerifyTool工具
    VisionPro Cog2DSymbolTool工具 读码工具
    VisionPro CogToolBlock输入输出终端
    VisionPro CogCompositeColorMatchTool
    VisionPro CogColorSegmenterTool
    VisionPro CogColorMatchTool
    VisionPro CogColorExtractorTool工具功能
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/14399754.html
Copyright © 2020-2023  润新知