• 旷视MegEngine数据加载与处理


    旷视MegEngine数据加载与处理

    在网络训练与测试中,数据的加载和预处理往往会耗费大量的精力。 MegEngine 提供了一系列接口来规范化这些处理工作。

    利用 Dataset 封装一个数据集

    数据集是一组数据的集合,例如 MNIST、Cifar10等图像数据集。 Dataset 是 MegEngine 中表示数据集的抽象类。自定义的数据集类应该继承 Dataset 并重写下列方法:

    • __init__() :一般在其中实现读取数据源文件的功能。也可以添加任何其它的必要功能;
    • __getitem__() :通过索引操作来获取数据集中某一个样本,使得可以通过 for 循环来遍历整个数据集;
    • __len__() :返回数据集大小;

    下面是一个简单示例。 根据下图所示的二分类数据,创建一个 Dataset 。每个数据是一个二维平面上的点,横坐标和纵坐标在 [-1, 1] 之间。共有两个类别标签(图1中的蓝色 * 和红色 +),标签为0的点处于一、三象限;标签为1的点处于二、四象限。

     

     图1

    该数据集的创建过程如下:

    • 在 __init__() 中利用 NumPy 随机生成 ndarray 作为数据;
    • 在 __getitem__() 中返回 ndarray 中的一个样本;
    • 在 __len__() 中返回整个数据集中样本的个数;

    import numpy as np

    from typing import Tuple

     

    # 导入需要被继承的 Dataset

    from megengine.data.dataset import Dataset

     

    class XORDataset(Dataset):

        def __init__(self, num_points):

            """

            生成如图1所示的二分类数据集,数据集长度为 num_points

            """

            super().__init__()

     

            # 初始化一个维度为 (50000, 2) NumPy 数组。

            # 数组的每一行是一个横坐标和纵坐标都落在 [-1, 1] 区间的一个数据点 (x, y)

            self.data = np.random.rand(num_points, 2).astype(np.float32) * 2 - 1

            # 为上述 NumPy 数组构建标签。每一行的 (x, y) 如果符合 x*y < 0,则对应标签为1,反之,标签为0

            self.label = np.zeros(num_points, dtype=np.int32)

            for i in range(num_points):

                self.label[i] = 1 if np.prod(self.data[i]) < 0 else 0

     

        # 定义获取数据集中每个样本的方法

        def __getitem__(self, index: int) -> Tuple:

            return self.data[index], self.label[index]

     

        # 定义返回数据集长度的方法

        def __len__(self) -> int:

            return len(self.data)

     

    np.random.seed(2020)

    # 构建一个包含 30000 个点的训练数据集

    xor_train_dataset = XORDataset(30000)

    print("The length of train dataset is: {}".format(len(xor_train_dataset)))

     

    # 通过 for 遍历数据集中的每一个样本

    for cor, tag in xor_train_dataset:

        print("The first data point is: {}, {}".format(cor, tag))

        break

     

    print("The second data point is: {}".format(xor_train_dataset[1]))

    输出:

    The length of train dataset is: 30000

    The first data point is: [0.97255366 0.74678389], 0

    The second data point is: (array([ 0.01949105, -0.45632857]), 1)

    MegEngine 中也提供了一些已经继承自 Dataset 的数据集类,方便使用,比如 ArrayDataset 。 ArrayDataset 允许通过传入单个或多个 NumPy 数组,对它进行初始化。其内部实现如下:

    • __init__() :检查传入的多个 NumPy 数组的长度是否一致;不一致则无法成功创建;
    • __getitem__() :将多个 NumPy 数组相同索引位置的元素构成一个 tuple 并返回;
    • __len__() :返回数据集的大小;

    以图1所示的数据集为例,可以通过坐标数据和标签数据的数组直接构造 ArrayDataset ,无需用户自己定义数据集类。

    from megengine.data.dataset import ArrayDataset

     

    # 准备 NumPy 形式的 data label 数据

    np.random.seed(2020)

    num_points = 30000

    data = np.random.rand(num_points, 2).astype(np.float32) * 2 - 1

    label = np.zeros(num_points, dtype=np.int32)

    for i in range(num_points):

        label[i] = 1 if np.prod(data[i]) < 0 else 0

     

    # 利用 ArrayDataset 创建一个数据集类

    xor_dataset = ArrayDataset(data, label)

    通过 Sampler Dataset 中采样

    Dataset 仅能通过一个固定的顺序(其 __getitem__ 实现)访问所有样本, 而 Sampler 使得可以以所期望的方式从 Dataset 中采样,生成训练和测试的批(minibatch)数据。 Sampler 本质上是一个数据集中数据索引的迭代器,接收 Dataset 的实例和批大小(batch_size)来进行初始化。

    MegEngine 中提供各种常见的采样器,如 RandomSampler (通常用于训练)、 SequentialSampler (通常用于测试) 等。

    下面示例,来熟悉 Sampler 的基本用法:

    # 导入 MegEngine 中采样器

    from megengine.data import RandomSampler

     

    # 创建一个随机采样器

    random_sampler = RandomSampler(dataset=xor_dataset, batch_size=4)

     

    # 获取迭代sampler时每次返回的数据集索引

    for indices in random_sampler:

        print(indices)

        break

    输出:

    [19827, 2614, 8788, 8641]

    可以看到,在 batch_size 为4时,每次迭代 sampler 返回的是长度为4的列表,列表中的每个元素是随机采样出的数据索引。

    如果创建的是一个序列化采样器 SequentialSampler ,那么每次返回的就是顺序索引。

    from megengine.data import SequentialSampler

     

    sequential_sampler = SequentialSampler(dataset=xor_dataset, batch_size=4)

     

    # 获取迭代sampler时返回的数据集索引信息

    for indices in sequential_sampler:

        print(indices)

        break

    输出:

    [0, 1, 2, 3]

    用户也可以继承 Sampler 自定义采样器,这里不做详述。

    DataLoader 生成批数据

    MegEngine 中,DataLoader 本质上是一个迭代器,它通过 Dataset 和 Sampler 生成 minibatch 数据。

    下列代码通过 for 循环获取每个 minibatch 的数据。

    from megengine.data import DataLoader

     

    # 创建一个 DataLoader,并指定数据集和顺序采样器

    xor_dataloader = DataLoader(

        dataset=xor_dataset,

        sampler=sequential_sampler,

    )

    print("The length of the xor_dataloader is: {}".format(len(xor_dataloader)))

    # DataLoader 中迭代地获取每批数据

    for idx, (cor, tag) in enumerate(xor_dataloader):

        print("iter %d : " % (idx), cor, tag)

        break

    输出:

    The length of the xor_dataloader is: 7500

    iter 0 :  [[ 0.97255366  0.74678389]

     [ 0.01949105 -0.45632857]

     [-0.32616254 -0.56609147]

     [-0.44704571 -0.31336881]] [0 1 0 0]

    DataLoader 中的数据变换(Transform

    在深度学习模型的训练中,经常需要对数据进行各种转换,比如,归一化、各种形式的数据增广等。 Transform 是数据变换的基类,其各种派生类提供了常见的数据转换功能。 DataLoader 构造函数可以接收一个 Transform 参数, 在构建 minibatch 时,对该批数据进行相应的转换操作。

    接下来通过 MNIST 数据集(MegEngine 提供了 MNIST Dataset)来熟悉 Transform 的使用。 首先构建一个不做 Transform 的 MNIST DataLoader,并可视化第一个 minibatch 数据。

    # MegEngine 中导入 MNIST 数据集

    from megengine.data.dataset import MNIST

     

    # 若是第一次下载 MNIST 数据集,download 需设置成 True

    # 若已经下载 MNIST 数据集,通过 root 指定 MNIST数据集 raw 路径

    # 通过设置 train=True/False 获取训练集或测试集

    mnist_train_dataset = MNIST(root="./dataset/MNIST", train=True, download=True)

    # mnist_test_dataset = MNIST(root="./dataset/MNIST", train=False, download=True)

    sequential_sampler = SequentialSampler(dataset=mnist_train_dataset, batch_size=4)

     

    mnist_train_dataloader = DataLoader(

        dataset=mnist_train_dataset,

        sampler=sequential_sampler,

    )

     

    for i, batch_sample in enumerate(mnist_train_dataloader):

        batch_image, batch_label = batch_sample[0], batch_sample[1]

        # 下面可以将 batch_image, batch_label 传递给网络做训练,这里省略

        # trainging code ...

        # 中断

        break

     

    print("The shape of minibatch is: {}".format(batch_image.shape))

     

    # 导入可视化 Python 库,若没有,安装

    import matplotlib.pyplot as plt

     

    def show(batch_image, batch_label):

        for i in range(4):

            plt.subplot(1, 4, i+1)

            plt.imshow(batch_image[i][:,:,-1], cmap='gray')

            plt.xticks([])

            plt.yticks([])

            plt.title("label: {}".format(batch_label[i]))

        plt.show()

     

    # 可视化数据

    show(batch_image, batch_label)

    输出:

    The shape of minibatch is: (4, 28, 28, 1)

    可视化第一批 MNIST 数据:

     

     图2

    然后,构建一个做 RandomResizedCrop transform 的 MNIST DataLoader,并查看此时第一个 minibatch 的图片。

    # 导入 MegEngine 已支持的一些数据增强操作

    from megengine.data.transform import RandomResizedCrop

     

    dataloader = DataLoader(

        mnist_train_dataset,

        sampler=sequential_sampler,

        # 指定随机裁剪后的图片的输出size

        transform=RandomResizedCrop(output_size=28),

    )

     

    for i, batch_sample in enumerate(dataloader):

        batch_image, batch_label = batch_sample[0], batch_sample[1]

        break

     

    show(batch_image, batch_label)

    可视化第一个批数据:

     

     图3

    可以看到,此时图片经过了随机裁剪并 resize 回原尺寸。

    组合变换(Compose Transform

    经常需要做一系列数据变换。比如:

    • 数据归一化:可以通过 Transform 中提供的 Normalize 类来实现;
    • Pad:对图片的每条边补零以增大图片尺寸,通过 Pad 类来实现;
    • 维度转换:将 (Batch-size, Hight, Width, Channel) 维度的 minibatch 转换为 (Batch-size, Channel, Hight, Width)(因为这是 MegEngine 支持的数据格式),通过 ToMode 类来实现;
    • 其它的转换操作

    为了方便使用,MegEngine 中的 Compose 类允许组合多个 Transform 并传递给 DataLoader 的 transform 参数。

    接下来通过 Compose 类将之前的 RandomResizedCrop 操作与 Normalize 、 Pad 和 ToMode 操作组合起来, 实现多种数据转换操作的混合使用。运行如下代码查看转换 minibatch 的维度信息。

    from megengine.data.transform import RandomResizedCrop, Normalize, ToMode, Pad, Compose

     

    # 利用 Compose 组合多个 Transform 操作

    dataloader = DataLoader(

        mnist_train_dataset,

        sampler=sequential_sampler,

        transform=Compose([

            RandomResizedCrop(output_size=28),

            # mean std 分别是 MNIST 数据的均值和标准差,图片数值范围是 0~255

            Normalize(mean=0.1307*255, std=0.3081*255),

            Pad(2),

            # 'CHW'表示把图片由 (height, width, channel) 格式转换成 (channel, height, width) 格式

            ToMode('CHW'),

        ])

    )

     

    for i, batch_sample in enumerate(dataloader):

        batch_image, batch_label = batch_sample[0], batch_sample[1]

        break

     

    print("The shape of the batch is now: {}".format(batch_image.shape))

    输出:

    The shape of the batch is now: (4, 1, 32, 32)

    可以看到,此时 minibatch 数据的 channel 维换了位置,且图片尺寸变为32。

    DataLoader 中其他参数的用法请参考 DataLoader 文档。

     

    人工智能芯片与自动驾驶
  • 相关阅读:
    数据结构和算法大纲
    内存碎片产生原因及处理技术
    相关资源
    busybox hexdump 命令使用
    http协议中content-length 以及chunked编码分析
    libtool工具的使用
    音视频学习相关资源
    winpcap
    ipkg包管理
    system返回值校验
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/14387507.html
Copyright © 2020-2023  润新知