• 深度学习模型轻量化(上)


    深度学习模型轻量化(上)

    移动端模型必须满足模型尺寸小计算复杂度低电池耗电量低下发更新部署灵活等条件。

    模型压缩和加速是两个不同的话题,有时候压缩并不一定能带来加速的效果,有时候又是相辅相成的。压缩重点在于减少网络参数量,加速则侧重在降低计算复杂度、提升并行能力等。模型压缩和加速可以从多个角度来优化。总体来看,个人认为主要分为三个层次:

    1.  算法层压缩加速。这个维度主要在算法应用层,也是大多数算法工程师的工作范畴。主要包括结构优化(如矩阵分解、分组卷积、小卷积核等)、量化与定点化、模型剪枝、模型蒸馏等。

    2.  框架层加速。这个维度主要在算法框架层,比如tf-lite、NCNN、MNN等。主要包括编译优化、缓存优化、稀疏存储和计算、NEON指令应用、算子优化等

    3.  硬件层加速。这个维度主要在AI硬件芯片层,目前有GPU、FPGA、ASIC等多种方案,各种TPU、NPU就是ASIC这种方案,通过专门为深度学习进行芯片定制,大大加速模型运行速度。

    下面也会分算法层、框架层和硬件层三个方面进行介绍。

    2 算法层压缩加速

    2.1 结构优化

    2.1.1 矩阵分解

    举个例子,将M*N的矩阵分解为M*K + K*N,只要让K<<M 且 K << N,就可以大大降低模型体积。比如在ALBERT的embedding层,就做了矩阵分解的优化。如下图所示

     

     其中M为词表长度,也就是vocab_size,典型值为21128。N为隐层大小,典型值为1024,也就是hidden_size。K为我们设置的低维词嵌入空间,可以设置为128。

    1.  分解前:矩阵参数量为 (M * N)

    2.  分解后:参数量为 (M*K + K*N)

    3.  压缩量:(M * N) / (M*K + K*N), 由于M远大于N,故可近似为 N / k,当N=2014,k=128时,可以压缩8倍

    2.1.2 权值共享

    相对于DNN全连接参数量过大的问题,CNN提出了局部感受野和权值共享的概念。在NLP中同样也有类似应用的场景。比如ALBert中,12层共用同一套参数,包括multi-head self attention和feed-forward,从而使得参数量降低到原来的1/12。这个方案对于模型压缩作用很大,但对于推理加速则收效甚微。因为共享权值并没有带来计算量的减少。

    2.1.3 分组卷积

    在视觉模型中应用较为广泛,比如shuffleNet,mobileNet等。我们以mobileNet为例。对于常规的M输入通道,N输出通道,dk*dk的kernel size的卷积,需要参数量为 M*N*dk*dk。这是因为每个输入通道,都会抽取N种特征(对应输出通道数),不同的输入通道需要不同的kernel来做抽取,然后叠加起来。故M个输入通道,N个输出通道,就需要M*N个kernel了。

    mobileNet对常规卷积做了优化,每个输入通道,仅需要一个kernel做特征提取,这叫做depth wise。如此M个通道可得到M个feature map。但我们想要的是N通道输出,怎么办呢?mobileNet采用一个常规1*1卷积来处理这个连接,从而转化到N个输出通道上。总结下来,mobileNet利用一个dk*dk的depth wise卷积和一个1*1的point wise卷积来实现一个常规卷积。

    1.  分组前:参数量 (M*N*dk*dk)

    2.  分组后:参数量 (M*dk*dk + M*N*1*1)

    3.  压缩量:(M*dk*dk + M*N*1*1) / (M*N*dk*dk),近似为 1/(dk*dk)。dk的常见值为3,也就是3*3卷积,故可缩小约9倍

    如下图所示:

     

     2.1.4 分解卷积

    1.  使用两个串联小卷积核来代替一个大卷积核。InceptionV2中创造性的提出了两个3x3的卷积核代替一个5x5的卷积核。在效果相同的情况下,参数量仅为原先的 3x3x2 / 5x5 = 18/25

    2.  使用两个并联的非对称卷积核来代替一个正常卷积核。InceptionV3中将一个7x7的卷积拆分成了一个1x7和一个7x1, 卷积效果相同的情况下,大大减少了参数量,同时还提高了卷积的多样性。

    2.1.5 其他

    1.  全局平均池化代替全连接层。这个才是大杀器!AlexNet和VGGNet中,全连接层几乎占据了90%的参数量。inceptionV1创造性的使用全局平均池化来代替最后的全连接层,使得其在网络结构更深的情况下(22层,AlexNet仅8层),参数量只有500万,仅为AlexNet的1/12

    2.  1x1卷积核的使用。1x1的卷积核可以说是性价比最高的卷积了,没有之一。它在参数量为1的情况下,同样能够提供线性变换,relu激活,输入输出channel变换等功能。VGGNet创造性的提出了1x1的卷积核

    3.  使用小卷积核来代替大卷积核。VGGNet全部使用3x3的小卷积核,来代替AlexNet中11x11和5x5等大卷积核。小卷积核虽然参数量较少,但也会带来特征面积捕获过小的问题。inception net认为越往后的卷积层,应该捕获更多更高阶的抽象特征。因此它在靠后的卷积层中使用的5x5等大面积的卷积核的比率较高,而在前面几层卷积中,更多使用的是1x1和3x3的卷积核。

    2.2 量化

    2.2.1 伪量化

    深度学习模型参数通常是32bit浮点型,我们能否使用16bit,8bit,甚至1bit来存储呢?答案是肯定的。常见的做法是保存模型每一层时,利用低精度来保存每一个网络参数,同时保存拉伸比例scale和零值对应的浮点数zero_point。推理阶段,利用如下公式来网络参数还原为32bit浮点:

     

      这个过程被称为伪量化

    伪量化之所以得名,是因为存储时使用了低精度进行量化,但推理时会还原为正常高精度。为什么推理时不仍然使用低精度呢?这是因为一方面框架层有些算子只支持浮点运算,需要专门实现算子定点化才行。另一方面,高精度推理准确率相对高一些。伪量化可以实现模型压缩,但对模型加速没有多大效果。

    2.2.2 聚类与伪量化

    一种实现伪量化的方案是,利用k-means等聚类算法,步骤如下:

    1.  将大小相近的参数聚在一起,分为一类。

    2.  每一类计算参数的平均值,作为它们量化后对应的值。

    3.  每一类参数存储时,只存储它们的聚类索引。索引和真实值(也就是类内平均值)保存在另外一张表中

    4.  推理时,利用索引和映射表,恢复为真实值。

    过程如下图所示,

     

     从上可见,当只需要4个类时,我们仅需要2bit就可以实现每个参数的存储了,压缩量达到16倍。推理时通过查找表恢复为浮点值,精度损失可控。结合霍夫曼编码,可进一步优化存储空间。一般来说,当聚类数为N时,我们压缩量为 log(N) / 32

    2.2.3 定点化

    与伪量化不同的是,定点化在推理时,不需要还原为浮点数。这需要框架实现算子的定点化运算支持。目前MNN、XNN等移动端AI框架中,均加入了定点化支持。

    2.3 剪枝

    2.3.1 剪枝流程

    剪枝归纳起来就是取其精华去其糟粕。按照剪枝粒度可分为突触剪枝神经元剪枝权重矩阵剪枝等。总体思想是,将权重矩阵中不重要的参数设置为0,结合稀疏矩阵来进行存储和计算。通常为了保证performance,需要一小步一小步地进行迭代剪枝。步子大了,容易那个啥的,大家都懂的哈。

    常见迭代剪枝流程如下图所示

     

    1.  训练一个performance较好的大模型。

    2.  评估模型中参数的重要性。常用的评估方法是,越接近0的参数越不重要。当然还有其他一些评估方法,这一块也是目前剪枝研究的热点。

    3.  将不重要的参数去掉,或者说是设置为0。之后可以通过稀疏矩阵进行存储。比如只存储非零元素的index和value。

    4.  训练集上微调,从而使得由于去掉了部分参数导致的performance下降能够尽量调整回来。

    5.  验证模型大小和performance是否达到了预期,如果没有,则继续迭代进行。

    2.3.2 突触剪枝

     

     突触剪枝剪掉神经元之间的不重要的连接。对应到权重矩阵中,相当于将某个参数设置为0。常见的做法是,按照数值大小对参数进行排序,将大小排名最后的k%置零即可,k%为压缩率。具体流程可以参考下面的图例:

    剪枝后

     

     2.3.3 神经元剪枝

     

     神经元剪枝则直接将某个节点直接去掉。对应到权重矩阵中,相当于某一行和某一列置零。常见做法是,计算神经元对应的一行和一列参数的平方和的根,对神经元进行重要性排序,将大小排名最后的k%置零。具体流程可以参考下面的图例:

     

     剪枝后 

     

     2.3.4 权重矩阵剪枝

    除了将权重矩阵中某些零散的参数,或者整行整列去掉外,我们能否将整个权重矩阵去掉呢?答案是肯定的,目前也有很多这方面的研究。NeurIPS 2019有篇文章,Are Sixteen Heads Really Better than One?,深入分析了BERT多头机制中每个头到底有多大用,结果发现很多头其实没啥卵用。他在要去掉的head上,加入mask,来做每个头的重要性分析。

    作者先分析了单独去掉每层每个头,WMT任务上BLEU的改变。发现,大多数head去掉后,对整体影响不大。如下图所示

     

     然后作者分析了,每层只保留一个最重要的head后,ACC的变化。可见很多层只保留一个head,performance影响不大。如下图所示

     

     由此可见,直接进行权重矩阵剪枝,也是可行的方案。相比突触剪枝和神经元剪枝,压缩率要大很多。

  • 相关阅读:
    OCP 071【中文】考试题库(cuug整理)第39题
    OCP 071【中文】考试题库(cuug整理)第38题
    OCP 071【中文】考试题库(cuug整理)第37题
    OCP 071【中文】考试题库(cuug整理)第36题
    OCP 071【中文】考试题库(cuug整理)第35题
    OCP 071【中文】考试题库(cuug整理)第34题
    POST 数据的丢失 +号
    Windows下使用 sqlmap 测试注入
    多部电梯的测试用例
    如何测试购物车?
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/12898599.html
Copyright © 2020-2023  润新知