AlexeyAB DarkNet YOLOv3框架解析与应用实践(二)
版本3有什么新功能?
YOLOv3使用了一些技巧来改进训练和提高性能,包括:多尺度预测、更好的主干分类器等等。全部细节都在我们的论文上!
使用预先训练的模型进行检测
这篇文章将指导你通过使用一个预先训练好的模型用YOLO系统检测物体。如果你还没有安装Darknet,你应该先安装。或者不去阅读所有的东西:
git clone https://github.com/pjreddie/darknet
cd darknet
make
容易的!
在cfg/子目录中已经有YOLO的配置文件。你必须在这里下载预先训练的权重文件(237MB)。或者运行这个:
wget https://pjreddie.com/media/files/yolov3.weights
将看到如下输出:
layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BFLOPs
1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BFLOPs
.......
105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.353 BFLOPs
106 detection
truth_thresh: Using default '1.000000'
Loading weights from yolov3.weights...Done!
data/dog.jpg: Predicted in 0.029329 seconds.
dog: 99%
truck: 93%
bicycle: 99%
Darknet打印出它检测到的物体,它的可信度,以及找到它们所花的时间。我们没有用OpenCV编译Darknet,因此它不能直接显示检测结果。相反,它将它们保存在predictions.png中。您可以打开它来查看检测到的对象。因为我们在CPU上使用Darknet,所以每张图像大约需要6-12秒。如果我们使用GPU版本,速度会快得多。 已经包括了一些例子图片,以防你需要灵感。尝试
data/eagle.jpg
, data/dog.jpg
, data/person.jpg
, or data/horses.jpg
!
detect命令是命令的更通用版本的简写。它相当于命令:
./darknet detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights data/dog.jpg
如果您只想在一个图像上运行检测,则不需要知道这一点,但知道是否要执行其他操作(如在网络摄像头上运行)(稍后将看到)会很有用。
多帧图像
不要在命令行上提供图像,您可以将其留空以尝试一行中的多个图像。相反,当配置和权重完成加载时,您将看到一个提示:
./darknet detect cfg/yolov3.cfg yolov3.weights
layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BFLOPs
1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BFLOPs
.......
104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.353 BFLOPs
106 detection
Loading weights from yolov3.weights...Done!
Enter Image Path:
输入像data/horses.jpg这样的图像路径,让它为该图像预测框。
完成后,它将提示您输入更多路径以尝试不同的图像。完成后,使用Ctrl-C退出程序。
更改检测阈值
默认情况下,YOLO只显示置信度为.25或更高的对象。可以通过将-thresh<val>标志传递给yolo命令来更改此值。例如,要显示所有检测,可以将阈值设置为0:
./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg -thresh 0
产生:
![[全部]
所以这显然不是非常有用,但是可以将其设置为不同的值来控制模型设置的阈值。 Tiny YOLOv3
我们有一个非常小的模型,也适用于约束环境,yolov3 tiny。要使用此模型,请首先下载权重:
wget https://pjreddie.com/media/files/yolov3-tiny.weights
然后使用Tiny配置文件和权重运行检测:
./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg
网络摄像头的实时检测
如果看不到结果,在测试数据上运行YOLO就不是很有趣了。与其在一堆图片上运行,不如在网络摄像头的输入上运行!
要运行这个演示,您需要使用CUDA和OpenCV编译Darknet。然后运行命令:
./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights
YOLO将显示当前FPS和预测类,以及在其上绘制边界框的图像。
你需要一个网络摄像头连接到OpenCV可以连接到的计算机,否则它将无法工作。如果您连接了多个网络摄像头,并且希望选择要使用的摄像头,则可以通过-c<num>标志进行选择(OpenCV默认使用网络摄像头0)。
如果OpenCV可以读取视频,也可以在视频文件上运行它:
./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights <video file>
这就是我们制作上述YouTube视频的方式。
在VOC上训练YOLO
如果你想使用不同的训练模式、超参数或数据集,你可以从头开始训练YOLO。下面是如何让它在Pascal VOC数据集上工作。
获取Pascal VOC数据
要训练YOLO,您需要2007年至2012年的所有VOC数据。你可以在这里找到数据的链接。要获取所有数据,请创建一个目录来存储所有数据,然后从该目录运行:
wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
tar xf VOCtrainval_11-May-2012.tar
tar xf VOCtrainval_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar
现在将有一个VOCdevkit/子目录,其中包含所有VOC训练数据。
为VOC生成标签
现在我们需要生成Darknet使用的标签文件。Darknet希望为每个图像创建一个.txt文件,并为图像中的每个真实值对象创建一条线,如下所示:
<object-class> <x> <y> <width> <height>
其中x、y、宽度和高度与图像的宽度和高度相关。要生成这些文件,我们将在Darknet的script s/目录中运行voc_label.py脚本。我们再下载一次吧,因为我们很懒。
wget https://pjreddie.com/media/files/voc_label.py
python voc_label.py
几分钟后,此脚本将生成所有必需的文件。它主要在VOCdevkit/VOC2007/labels/和VOCdevkit/VOC2012/labels/中生成大量标签文件。在您的目录中,您应该看到:
ls
2007_test.txt VOCdevkit
2007_train.txt voc_label.py
2007_val.txt VOCtest_06-Nov-2007.tar
2012_train.txt VOCtrainval_06-Nov-2007.tar
2012_val.txt VOCtrainval_11-May-2012.tar
文本文件如2007_train.txt列出了当年的图像文件和图像集。Darknet需要一个文本文件,其中包含所有要训练的图像。在这个例子中,让我们训练除了2007测试集之外的所有东西,以便我们可以测试我们的模型。运行:
cat 2007_train.txt 2007_val.txt 2012_*.txt > train.txt
现在我们把2007年的trainval和2012年的trainval都列在一个大名单上。这就是我们要做的数据设置!
修改Pascal数据的Cfg
现在找到的darknet目录。我们必须更改cfg/voc.data配置文件以指向您的数据:
1 classes= 20
2 train = <path-to-voc>/train.txt
3 valid = <path-to-voc>2007_test.txt
4 names = data/voc.names
5 backup = backup
您应该将<path to voc>替换为放置voc数据的目录。
下载预训练卷积权重
对于训练,我们使用在Imagenet上预先训练的卷积权重。我们使用darknet53模型的权重。你可以在这里下载卷积层的权重(76MB)。
wget https://pjreddie.com/media/files/darknet53.conv.74
训练模型
现在我们可以训练了!运行命令:
./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74
在COCO上训练YOLO
如果你想使用不同的训练模式、超参数或数据集,你可以从头开始训练YOLO。下面是如何让它在COCO数据集上工作。
获取COCO数据
为了训练YOLO,你需要所有的COCO数据和标签。脚本scripts/get_coco_dataset.sh将为您执行此操作。找出要将COCO数据放在哪里并下载它,例如:
cp scripts/get_coco_dataset.sh data
cd data
bash get_coco_dataset.sh
现在您应该拥有为Darknet生成的所有数据和标签。
修改COCO的cfg
现在找到darknet目录。我们必须更改cfg/coco.data配置文件以指向您的数据:
1 classes= 80
2 train = <path-to-coco>/trainvalno5k.txt
3 valid = <path-to-coco>/5k.txt
4 names = data/coco.names
5 backup = backup
您应该用放置coco数据的目录替换<path to coco>。
您还应该修改模型cfg以进行训练,而不是测试。cfg/yolo.cfg应该如下所示:
[net]
# Testing
# batch=1
# subdivisions=1
# Training
batch=64
subdivisions=8
....
训练模型
现在我们可以训练了!运行命令:
./darknet detector train cfg/coco.data cfg/yolov3.cfg darknet53.conv.74
如果要使用多个GPU运行:
./darknet detector train cfg/coco.data cfg/yolov3.cfg darknet53.conv.74 -gpus 0,1,2,3
如果要从检查点停止并重新开始训练:
./darknet detector train cfg/coco.data cfg/yolov3.cfg backup/yolov3.backup -gpus 0,1,2,3
开放图像数据集上的YOLOv3
wget https://pjreddie.com/media/files/yolov3-openimages.weights
./darknet detector test cfg/openimages.data cfg/yolov3-openimages.cfg yolov3-openimages.weights
老yolo地址怎么了?
如果您使用的是YOLO版本2,您仍然可以在此处找到该网站:
https://pjreddie.com/darknet/yolov2/
引用
如果你在工作中使用YOLOv3,请引用我们的论文!
@article{yolov3,
title={YOLOv3: An Incremental Improvement},
author={Redmon, Joseph and Farhadi, Ali},
journal = {arXiv},
year={2018}
}