• Android笔记——Matrix


    转自:http://www.cnblogs.com/qiengo/archive/2012/06/30/2570874.html#translate

    Matrix的数学原理

    在Android中,如果你用Matrix进行过图像处理,那么一定知道Matrix这个类。Android中的Matrix是一个3 x 3的矩阵,其内容如下:

     

    Matrix的对图像的处理可分为四类基本变换:

    Translate           平移变换

    Rotate                旋转变换

    Scale                  缩放变换

    Skew                  错切变换

    从字面上理解,矩阵中的MSCALE用于处理缩放变换,MSKEW用于处理错切变换,MTRANS用于处理平移变换,MPERSP用于处理透视变换。实际中当然不能完全按照字面上的说法去理解Matrix。同时,在Android的文档中,未见到用Matrix进行透视变换的相关说明,所以本文也不讨论这方面的问题。

    针对每种变换,Android提供了pre、set和post三种操作方式。其中

    set用于设置Matrix中的值。

    pre是先乘,因为矩阵的乘法不满足交换律,因此先乘、后乘必须要严格区分。先乘相当于矩阵运算中的右乘。

    post是后乘,因为矩阵的乘法不满足交换律,因此先乘、后乘必须要严格区分。后乘相当于矩阵运算中的左乘。

    除平移变换(Translate)外,旋转变换(Rotate)、缩放变换(Scale)和错切变换(Skew)都可以围绕一个中心点来进行,如果不指定,在默认情况下是围绕(0, 0)来进行相应的变换的。

    下面我们来看看四种变换的具体情形。由于所有的图形都是有点组成,因此我们只需要考察一个点相关变换即可。

    一、 平移变换

    假定有一个点的坐标是 ,将其移动到 ,再假定在x轴和y轴方向移动的大小分别为:

    如下图所示:

    不难知道:

    如果用矩阵来表示的话,就可以写成:

     

     

    二、 旋转变换

    2.1    围绕坐标原点旋转:

    假定有一个点 ,相对坐标原点顺时针旋转后的情形,同时假定P点离坐标原点的距离为r,如下图:

    那么,

    如果用矩阵,就可以表示为:

    2.2    围绕某个点旋转

    如果是围绕某个点顺时针旋转,那么可以用矩阵表示为:

    可以化为:

    很显然,

    1.   

      是将坐标原点移动到点后, 的新坐标。

    2.     

    是将上一步变换后的,围绕新的坐标原点顺时针旋转 。

    3.     

    经过上一步旋转变换后,再将坐标原点移回到原来的坐标原点。

    所以,围绕某一点进行旋转变换,可以分成3个步骤,即首先将坐标原点移至该点,然后围绕新的坐标原点进行旋转变换,再然后将坐标原点移回到原先的坐标原点。

    三、 缩放变换

    理论上而言,一个点是不存在什么缩放变换的,但考虑到所有图像都是由点组成,因此,如果图像在x轴和y轴方向分别放大k1k2倍的话,那么图像中的所有点的x坐标和y坐标均会分别放大k1k2倍,即

    用矩阵表示就是:

    缩放变换比较好理解,就不多说了。

    四、 错切变换

    错切变换(skew)在数学上又称为Shear mapping(可译为“剪切变换”)或者Transvection(缩并),它是一种比较特殊的线性变换。错切变换的效果就是让所有点的x坐标(或者y坐标)保持不变,而对应的y坐标(或者x坐标)则按比例发生平移,且平移的大小和该点到x轴(或y轴)的垂直距离成正比。错切变换,属于等面积变换,即一个形状在错切变换的前后,其面积是相等的。

    比如下图,各点的y坐标保持不变,但其x坐标则按比例发生了平移。这种情况将水平错切。

    下图各点的x坐标保持不变,但其y坐标则按比例发生了平移。这种情况叫垂直错切。

     

    假定一个点经过错切变换后得到,对于水平错切而言,应该有如下关系:

    用矩阵表示就是:

    扩展到3 x 3的矩阵就是下面这样的形式:

     

    同理,对于垂直错切,可以有:

    在数学上严格的错切变换就是上面这样的。在Android中除了有上面说到的情况外,还可以同时进行水平、垂直错切,那么形式上就是:

    五、 对称变换

    除了上面讲到的4中基本变换外,事实上,我们还可以利用Matrix,进行对称变换。所谓对称变换,就是经过变化后的图像和原图像是关于某个对称轴是对称的。比如,某点 经过对称变换后得到

    如果对称轴是x轴,难么,

    用矩阵表示就是:

    如果对称轴是y轴,那么,

    用矩阵表示就是:

    如果对称轴是y = x,如图:

    那么,

    很容易可以解得:

    用矩阵表示就是:

    同样的道理,如果对称轴是y = -x,那么用矩阵表示就是:

     

    特殊地,如果对称轴是y = kx,如下图:

    那么,

    很容易可解得:

    用矩阵表示就是:

    k = 0时,即y = 0,也就是对称轴为x轴的情况;当k趋于无穷大时,即x = 0,也就是对称轴为y轴的情况;当k =1时,即y = x,也就是对称轴为y = x的情况;当k = -1时,即y = -x,也就是对称轴为y = -x的情况。不难验证,这和我们前面说到的4中具体情况是相吻合的。

    如果对称轴是y = kx + b这样的情况,只需要在上面的基础上增加两次平移变换即可,即先将坐标原点移动到(0, b),然后做上面的关于y = kx的对称变换,再然后将坐标原点移回到原来的坐标原点即可。用矩阵表示大致是这样的:

    需要特别注意:在实际编程中,我们知道屏幕的y坐标的正向和数学中y坐标的正向刚好是相反的,所以在数学上y = x和屏幕上的y = -x才是真正的同一个东西,反之亦然。也就是说,如果要使图片在屏幕上看起来像按照数学意义上y = x对称,那么需使用这种转换:

    要使图片在屏幕上看起来像按照数学意义上y = -x对称,那么需使用这种转换:
     

    关于对称轴为y = kx y = kx + b的情况,同样需要考虑这方面的问题。

    第二部分 代码验证

    在第一部分中讲到的各种图像变换的验证代码如下,一共列出了10种情况。如果要验证其中的某一种情况,只需将相应的代码反注释即可。试验中用到的图片:

    其尺寸为162 x 251。

    其尺寸为162 x 251。

      1 <span style="font-size:13px;"></span><pre name="code" class="java">package com.pat.testtransformmatrix;  
      2   
      3 import android.app.Activity;  
      4 import android.content.Context;  
      5 import android.graphics.Bitmap;  
      6 import android.graphics.BitmapFactory;  
      7 import android.graphics.Canvas;  
      8 import android.graphics.Matrix;  
      9 import android.os.Bundle;  
     10 import android.util.Log;  
     11 import android.view.MotionEvent;  
     12 import android.view.View;  
     13 import android.view.Window;  
     14 import android.view.WindowManager;  
     15 import android.view.View.OnTouchListener;  
     16 import android.widget.ImageView;  
     17   
     18 public class TestTransformMatrixActivity extends Activity  
     19 implements  
     20 OnTouchListener  
     21 {  
     22     private TransformMatrixView view;  
     23     @Override  
     24     public void onCreate(Bundle savedInstanceState)  
     25     {  
     26         super.onCreate(savedInstanceState);  
     27         requestWindowFeature(Window.FEATURE_NO_TITLE);  
     28         this.getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN, WindowManager.LayoutParams.FLAG_FULLSCREEN);  
     29   
     30         view = new TransformMatrixView(this);  
     31         view.setScaleType(ImageView.ScaleType.MATRIX);  
     32         view.setOnTouchListener(this);  
     33           
     34         setContentView(view);  
     35     }  
     36       
     37     class TransformMatrixView extends ImageView  
     38     {  
     39         private Bitmap bitmap;  
     40         private Matrix matrix;  
     41         public TransformMatrixView(Context context)  
     42         {  
     43             super(context);  
     44             bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.sophie);  
     45             matrix = new Matrix();  
     46         }  
     47   
     48         @Override  
     49         protected void onDraw(Canvas canvas)  
     50         {  
     51             // 画出原图像  
     52             canvas.drawBitmap(bitmap, 0, 0, null);  
     53             // 画出变换后的图像  
     54             canvas.drawBitmap(bitmap, matrix, null);  
     55             super.onDraw(canvas);  
     56         }  
     57   
     58         @Override  
     59         public void setImageMatrix(Matrix matrix)  
     60         {  
     61             this.matrix.set(matrix);  
     62             super.setImageMatrix(matrix);  
     63         }  
     64           
     65         public Bitmap getImageBitmap()  
     66         {  
     67             return bitmap;  
     68         }  
     69     }  
     70   
     71     public boolean onTouch(View v, MotionEvent e)  
     72     {  
     73         if(e.getAction() == MotionEvent.ACTION_UP)  
     74         {  
     75             Matrix matrix = new Matrix();  
     76             // 输出图像的宽度和高度(162 x 251)  
     77             Log.e("TestTransformMatrixActivity", "image size: width x height = " +  view.getImageBitmap().getWidth() + " x " + view.getImageBitmap().getHeight());  
     78             // 1. 平移  
     79             matrix.postTranslate(view.getImageBitmap().getWidth(), view.getImageBitmap().getHeight());  
     80             // 在x方向平移view.getImageBitmap().getWidth(),在y轴方向view.getImageBitmap().getHeight()  
     81             view.setImageMatrix(matrix);  
     82               
     83             // 下面的代码是为了查看matrix中的元素  
     84             float[] matrixValues = new float[9];  
     85             matrix.getValues(matrixValues);  
     86             for(int i = 0; i < 3; ++i)  
     87             {  
     88                 String temp = new String();  
     89                 for(int j = 0; j < 3; ++j)  
     90                 {  
     91                     temp += matrixValues[3 * i + j ] + "	";  
     92                 }  
     93                 Log.e("TestTransformMatrixActivity", temp);  
     94             }  
     95               
     96   
     97 //          // 2. 旋转(围绕图像的中心点)  
     98 //          matrix.setRotate(45f, view.getImageBitmap().getWidth() / 2f, view.getImageBitmap().getHeight() / 2f);  
     99 //            
    100 //          // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠  
    101 //          matrix.postTranslate(view.getImageBitmap().getWidth() * 1.5f, 0f);  
    102 //          view.setImageMatrix(matrix);  
    103 //  
    104 //          // 下面的代码是为了查看matrix中的元素  
    105 //          float[] matrixValues = new float[9];  
    106 //          matrix.getValues(matrixValues);  
    107 //          for(int i = 0; i < 3; ++i)  
    108 //          {  
    109 //              String temp = new String();  
    110 //              for(int j = 0; j < 3; ++j)  
    111 //              {  
    112 //                  temp += matrixValues[3 * i + j ] + "	";  
    113 //              }  
    114 //              Log.e("TestTransformMatrixActivity", temp);  
    115 //          }  
    116               
    117               
    118 //          // 3. 旋转(围绕坐标原点) + 平移(效果同2)  
    119 //          matrix.setRotate(45f);  
    120 //          matrix.preTranslate(-1f * view.getImageBitmap().getWidth() / 2f, -1f * view.getImageBitmap().getHeight() / 2f);  
    121 //          matrix.postTranslate((float)view.getImageBitmap().getWidth() / 2f, (float)view.getImageBitmap().getHeight() / 2f);  
    122 //            
    123 //          // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠  
    124 //          matrix.postTranslate((float)view.getImageBitmap().getWidth() * 1.5f, 0f);  
    125 //          view.setImageMatrix(matrix);  
    126 //            
    127 //          // 下面的代码是为了查看matrix中的元素  
    128 //          float[] matrixValues = new float[9];  
    129 //          matrix.getValues(matrixValues);  
    130 //          for(int i = 0; i < 3; ++i)  
    131 //          {  
    132 //              String temp = new String();  
    133 //              for(int j = 0; j < 3; ++j)  
    134 //              {  
    135 //                  temp += matrixValues[3 * i + j ] + "	";  
    136 //              }  
    137 //              Log.e("TestTransformMatrixActivity", temp);  
    138 //          }             
    139               
    140 //          // 4. 缩放  
    141 //          matrix.setScale(2f, 2f);  
    142 //          // 下面的代码是为了查看matrix中的元素  
    143 //          float[] matrixValues = new float[9];  
    144 //          matrix.getValues(matrixValues);  
    145 //          for(int i = 0; i < 3; ++i)  
    146 //          {  
    147 //              String temp = new String();  
    148 //              for(int j = 0; j < 3; ++j)  
    149 //              {  
    150 //                  temp += matrixValues[3 * i + j ] + "	";  
    151 //              }  
    152 //              Log.e("TestTransformMatrixActivity", temp);  
    153 //          }  
    154 //            
    155 //          // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠  
    156 //          matrix.postTranslate(view.getImageBitmap().getWidth(), view.getImageBitmap().getHeight());  
    157 //          view.setImageMatrix(matrix);  
    158 //            
    159 //          // 下面的代码是为了查看matrix中的元素  
    160 //          matrixValues = new float[9];  
    161 //          matrix.getValues(matrixValues);  
    162 //          for(int i = 0; i < 3; ++i)  
    163 //          {  
    164 //              String temp = new String();  
    165 //              for(int j = 0; j < 3; ++j)  
    166 //              {  
    167 //                  temp += matrixValues[3 * i + j ] + "	";  
    168 //              }  
    169 //              Log.e("TestTransformMatrixActivity", temp);  
    170 //          }  
    171   
    172               
    173 //          // 5. 错切 - 水平  
    174 //          matrix.setSkew(0.5f, 0f);  
    175 //          // 下面的代码是为了查看matrix中的元素  
    176 //          float[] matrixValues = new float[9];  
    177 //          matrix.getValues(matrixValues);  
    178 //          for(int i = 0; i < 3; ++i)  
    179 //          {  
    180 //              String temp = new String();  
    181 //              for(int j = 0; j < 3; ++j)  
    182 //              {  
    183 //                  temp += matrixValues[3 * i + j ] + "	";  
    184 //              }  
    185 //              Log.e("TestTransformMatrixActivity", temp);  
    186 //          }  
    187 //            
    188 //          // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠           
    189 //          matrix.postTranslate(view.getImageBitmap().getWidth(), 0f);  
    190 //          view.setImageMatrix(matrix);  
    191 //            
    192 //          // 下面的代码是为了查看matrix中的元素  
    193 //          matrixValues = new float[9];  
    194 //          matrix.getValues(matrixValues);  
    195 //          for(int i = 0; i < 3; ++i)  
    196 //          {  
    197 //              String temp = new String();  
    198 //              for(int j = 0; j < 3; ++j)  
    199 //              {  
    200 //                  temp += matrixValues[3 * i + j ] + "	";  
    201 //              }  
    202 //              Log.e("TestTransformMatrixActivity", temp);  
    203 //          }  
    204               
    205 //          // 6. 错切 - 垂直  
    206 //          matrix.setSkew(0f, 0.5f);  
    207 //          // 下面的代码是为了查看matrix中的元素  
    208 //          float[] matrixValues = new float[9];  
    209 //          matrix.getValues(matrixValues);  
    210 //          for(int i = 0; i < 3; ++i)  
    211 //          {  
    212 //              String temp = new String();  
    213 //              for(int j = 0; j < 3; ++j)  
    214 //              {  
    215 //                  temp += matrixValues[3 * i + j ] + "	";  
    216 //              }  
    217 //              Log.e("TestTransformMatrixActivity", temp);  
    218 //          }  
    219 //            
    220 //          // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠               
    221 //          matrix.postTranslate(0f, view.getImageBitmap().getHeight());  
    222 //          view.setImageMatrix(matrix);  
    223 //            
    224 //          // 下面的代码是为了查看matrix中的元素  
    225 //          matrixValues = new float[9];  
    226 //          matrix.getValues(matrixValues);  
    227 //          for(int i = 0; i < 3; ++i)  
    228 //          {  
    229 //              String temp = new String();  
    230 //              for(int j = 0; j < 3; ++j)  
    231 //              {  
    232 //                  temp += matrixValues[3 * i + j ] + "	";  
    233 //              }  
    234 //              Log.e("TestTransformMatrixActivity", temp);  
    235 //          }             
    236               
    237 //          7. 错切 - 水平 + 垂直  
    238 //          matrix.setSkew(0.5f, 0.5f);  
    239 //          // 下面的代码是为了查看matrix中的元素  
    240 //          float[] matrixValues = new float[9];  
    241 //          matrix.getValues(matrixValues);  
    242 //          for(int i = 0; i < 3; ++i)  
    243 //          {  
    244 //              String temp = new String();  
    245 //              for(int j = 0; j < 3; ++j)  
    246 //              {  
    247 //                  temp += matrixValues[3 * i + j ] + "	";  
    248 //              }  
    249 //              Log.e("TestTransformMatrixActivity", temp);  
    250 //          }  
    251 //            
    252 //          // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠               
    253 //          matrix.postTranslate(0f, view.getImageBitmap().getHeight());  
    254 //          view.setImageMatrix(matrix);  
    255 //            
    256 //          // 下面的代码是为了查看matrix中的元素  
    257 //          matrixValues = new float[9];  
    258 //          matrix.getValues(matrixValues);  
    259 //          for(int i = 0; i < 3; ++i)  
    260 //          {  
    261 //              String temp = new String();  
    262 //              for(int j = 0; j < 3; ++j)  
    263 //              {  
    264 //                  temp += matrixValues[3 * i + j ] + "	";  
    265 //              }  
    266 //              Log.e("TestTransformMatrixActivity", temp);  
    267 //          }  
    268               
    269 //          // 8. 对称 (水平对称)  
    270 //          float matrix_values[] = {1f, 0f, 0f, 0f, -1f, 0f, 0f, 0f, 1f};  
    271 //          matrix.setValues(matrix_values);  
    272 //          // 下面的代码是为了查看matrix中的元素  
    273 //          float[] matrixValues = new float[9];  
    274 //          matrix.getValues(matrixValues);  
    275 //          for(int i = 0; i < 3; ++i)  
    276 //          {  
    277 //              String temp = new String();  
    278 //              for(int j = 0; j < 3; ++j)  
    279 //              {  
    280 //                  temp += matrixValues[3 * i + j ] + "	";  
    281 //              }  
    282 //              Log.e("TestTransformMatrixActivity", temp);  
    283 //          }  
    284 //            
    285 //          // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠   
    286 //          matrix.postTranslate(0f, view.getImageBitmap().getHeight() * 2f);  
    287 //          view.setImageMatrix(matrix);  
    288 //            
    289 //          // 下面的代码是为了查看matrix中的元素  
    290 //          matrixValues = new float[9];  
    291 //          matrix.getValues(matrixValues);  
    292 //          for(int i = 0; i < 3; ++i)  
    293 //          {  
    294 //              String temp = new String();  
    295 //              for(int j = 0; j < 3; ++j)  
    296 //              {  
    297 //                  temp += matrixValues[3 * i + j ] + "	";  
    298 //              }  
    299 //              Log.e("TestTransformMatrixActivity", temp);  
    300 //          }             
    301               
    302 //          // 9. 对称 - 垂直  
    303 //          float matrix_values[] = {-1f, 0f, 0f, 0f, 1f, 0f, 0f, 0f, 1f};  
    304 //          matrix.setValues(matrix_values);  
    305 //          // 下面的代码是为了查看matrix中的元素  
    306 //          float[] matrixValues = new float[9];  
    307 //          matrix.getValues(matrixValues);  
    308 //          for(int i = 0; i < 3; ++i)  
    309 //          {  
    310 //              String temp = new String();  
    311 //              for(int j = 0; j < 3; ++j)  
    312 //              {  
    313 //                  temp += matrixValues[3 * i + j ] + "	";  
    314 //              }  
    315 //              Log.e("TestTransformMatrixActivity", temp);  
    316 //          }     
    317 //            
    318 //          // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠   
    319 //          matrix.postTranslate(view.getImageBitmap().getWidth() * 2f, 0f);  
    320 //          view.setImageMatrix(matrix);  
    321 //            
    322 //          // 下面的代码是为了查看matrix中的元素  
    323 //          matrixValues = new float[9];  
    324 //          matrix.getValues(matrixValues);  
    325 //          for(int i = 0; i < 3; ++i)  
    326 //          {  
    327 //              String temp = new String();  
    328 //              for(int j = 0; j < 3; ++j)  
    329 //              {  
    330 //                  temp += matrixValues[3 * i + j ] + "	";  
    331 //              }  
    332 //              Log.e("TestTransformMatrixActivity", temp);  
    333 //          }  
    334   
    335               
    336 //          // 10. 对称(对称轴为直线y = x)  
    337 //          float matrix_values[] = {0f, -1f, 0f, -1f, 0f, 0f, 0f, 0f, 1f};  
    338 //          matrix.setValues(matrix_values);  
    339 //          // 下面的代码是为了查看matrix中的元素  
    340 //          float[] matrixValues = new float[9];  
    341 //          matrix.getValues(matrixValues);  
    342 //          for(int i = 0; i < 3; ++i)  
    343 //          {  
    344 //              String temp = new String();  
    345 //              for(int j = 0; j < 3; ++j)  
    346 //              {  
    347 //                  temp += matrixValues[3 * i + j ] + "	";  
    348 //              }  
    349 //              Log.e("TestTransformMatrixActivity", temp);  
    350 //          }  
    351 //            
    352 //          // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠               
    353 //          matrix.postTranslate(view.getImageBitmap().getHeight() + view.getImageBitmap().getWidth(),   
    354 //                  view.getImageBitmap().getHeight() + view.getImageBitmap().getWidth());  
    355 //          view.setImageMatrix(matrix);  
    356 //            
    357 //          // 下面的代码是为了查看matrix中的元素  
    358 //          matrixValues = new float[9];  
    359 //          matrix.getValues(matrixValues);  
    360 //          for(int i = 0; i < 3; ++i)  
    361 //          {  
    362 //              String temp = new String();  
    363 //              for(int j = 0; j < 3; ++j)  
    364 //              {  
    365 //                  temp += matrixValues[3 * i + j ] + "	";  
    366 //              }  
    367 //              Log.e("TestTransformMatrixActivity", temp);  
    368 //          }  
    369               
    370             view.invalidate();  
    371         }  
    372         return true;  
    373     }  
    374 }  

    下面给出上述代码中,各种变换的具体结果及其对应的相关变换矩阵

    1.     平移

    输出的结果:

    请对照第一部分中的“一、平移变换”所讲的情形,考察上述矩阵的正确性。

    2.     旋转(围绕图像的中心点)

    输出的结果:

    它实际上是

    matrix.setRotate(45f,view.getImageBitmap().getWidth() / 2f, view.getImageBitmap().getHeight() / 2f);

    matrix.postTranslate(view.getImageBitmap().getWidth()* 1.5f, 0f);

    这两条语句综合作用的结果。根据第一部分中“二、旋转变换”里面关于围绕某点旋转的公式,

    matrix.setRotate(45f,view.getImageBitmap().getWidth() / 2f, view.getImageBitmap().getHeight() / 2f);

    所产生的转换矩阵就是:

    而matrix.postTranslate(view.getImageBitmap().getWidth()* 1.5f, 0f);的意思就是在上述矩阵的左边再乘以下面的矩阵:

    关于post是左乘这一点,我们在前面的理论部分曾经提及过,后面我们还会专门讨论这个问题。

    所以它实际上就是:

    出去计算上的精度误差,我们可以看到我们计算出来的结果,和程序直接输出的结果是一致的。

    3.     旋转(围绕坐标原点旋转,在加上两次平移,效果同2)

    根据第一部分中“二、旋转变换”里面关于围绕某点旋转的解释,不难知道:

    matrix.setRotate(45f,view.getImageBitmap().getWidth() / 2f, view.getImageBitmap().getHeight() / 2f);

    等价于

    matrix.setRotate(45f);

    matrix.preTranslate(-1f* view.getImageBitmap().getWidth() / 2f, -1f *view.getImageBitmap().getHeight() / 2f);

    matrix.postTranslate((float)view.getImageBitmap().getWidth()/ 2f, (float)view.getImageBitmap().getHeight() / 2f);

    其中matrix.setRotate(45f)对应的矩阵是:

    matrix.preTranslate(-1f* view.getImageBitmap().getWidth() / 2f, -1f * view.getImageBitmap().getHeight()/ 2f)对应的矩阵是:

    由于是preTranslate,是先乘,也就是右乘,即它应该出现在matrix.setRotate(45f)所对应矩阵的右侧。

    matrix.postTranslate((float)view.getImageBitmap().getWidth()/ 2f, (float)view.getImageBitmap().getHeight() / 2f)对应的矩阵是:

    这次由于是postTranslate,是后乘,也就是左乘,即它应该出现在matrix.setRotate(45f)所对应矩阵的左侧。

    所以综合起来,

    matrix.setRotate(45f);

    matrix.preTranslate(-1f* view.getImageBitmap().getWidth() / 2f, -1f *view.getImageBitmap().getHeight() / 2f);

    matrix.postTranslate((float)view.getImageBitmap().getWidth()/ 2f, (float)view.getImageBitmap().getHeight() / 2f);

    对应的矩阵就是:

    这和下面这个矩阵(围绕图像中心顺时针旋转45度)其实是一样的:

    因此,此处变换后的图像和2中变换后的图像时一样的。

    4.     缩放变换

    程序所输出的两个矩阵分别是:

    其中第二个矩阵,其实是下面两个矩阵相乘的结果:

     

    大家可以对照第一部分中的“三、缩放变换”和“一、平移变换”说法,自行验证结果。

    5.     错切变换(水平错切)

    代码所输出的两个矩阵分别是:

    其中,第二个矩阵其实是下面两个矩阵相乘的结果:

     

    大家可以对照第一部分中的“四、错切变换”和“一、平移变换”的相关说法,自行验证结果。

    6.     错切变换(垂直错切)

    代码所输出的两个矩阵分别是:

    其中,第二个矩阵其实是下面两个矩阵相乘的结果:

    大家可以对照第一部分中的“四、错切变换”和“一、平移变换”的相关说法,自行验证结果。

    7.     错切变换(水平+垂直错切)

    代码所输出的两个矩阵分别是:

    其中,后者是下面两个矩阵相乘的结果:

    大家可以对照第一部分中的“四、错切变换”和“一、平移变换”的相关说法,自行验证结果。

    8.     对称变换(水平对称)

    代码所输出的两个各矩阵分别是:

    其中,后者是下面两个矩阵相乘的结果:

     

    大家可以对照第一部分中的“五、对称变换”和“一、平移变换”的相关说法,自行验证结果。

    9.     对称变换(垂直对称)

    代码所输出的两个矩阵分别是:

    其中,后者是下面两个矩阵相乘的结果:

     

    大家可以对照第一部分中的“五、对称变换”和“一、平移变换”的相关说法,自行验证结果。

    10.   对称变换(对称轴为直线y = x)

    代码所输出的两个矩阵分别是:

    其中,后者是下面两个矩阵相乘的结果:

     

    大家可以对照第一部分中的“五、对称变换”和“一、平移变换”的相关说法,自行验证结果。

    11.   关于先乘和后乘的问题

    由于矩阵的乘法运算不满足交换律,我们在前面曾经多次提及先乘、后乘的问题,即先乘就是矩阵运算中右乘,后乘就是矩阵运算中的左乘。其实先乘、后乘的概念是针对变换操作的时间先后而言的,左乘、右乘是针对矩阵运算的左右位置而言的。以第一部分“二、旋转变换”中围绕某点旋转的情况为例:

     

    越靠近原图像中像素的矩阵,越先乘,越远离原图像中像素的矩阵,越后乘。事实上,图像处理时,矩阵的运算是从右边往左边方向进行运算的。这就形成了越在右边的矩阵(右乘),越先运算(先乘),反之亦然。

    当然,在实际中,如果首先指定了一个matrix,比如我们先setRotate(),即指定了上面变换矩阵中,中间的那个矩阵,那么后续的矩阵到底是pre还是post运算,都是相对这个中间矩阵而言的。

  • 相关阅读:
    SQL SERVER使用技巧集
    WIN32串口编程
    经典FLASH收藏
    Windows下WinsockAPI研究
    数据库连接大全[转自中国站长网]
    VirtualBox自动重启之谜
    写个设置命令的VBS脚本工具。
    VB中KeyCode的取法
    实现串口编程的三种方法
    .NET的命名空间
  • 原文地址:https://www.cnblogs.com/wugu-ren/p/6179076.html
Copyright © 2020-2023  润新知