• 《机电传动控制》----学习笔记四


    一、设计要求

    结合本周学习的交流电机原理及启动、调速、制动特性,用Modelica设计和仿真一个用三相交流异步电机带动起重机起升机构运行。具体要求如下:

    1)实现如下机械运动周期:

    • 控制电机带重物上升,从静止加速到800r/min
    • 保持800r/min匀速运动0.5s,
    • 减速到静止,保持静止状态0.5s,
    • 带重物下降,从静止达到600r/min
    • 保持600r/min匀速运动0.6s,
    • 减速到静止。
      (为了便于仿真,匀速和静止持续时间较短)

    2) 升降机构和重物折算到到电机转子轴上的等效负载惯量为1Kg.m^2,折算到到电机转子轴上的等效负载转矩是15N.m。

    3)使用统一的电机模型,如果控制策略中用到转子串电阻,允许将该电机的转子改为绕线式转子(参数不变)。

    4)参照教材中给出的交流电机启动、调速和制动方法,设计控制策略,用Modelica实现控制策略并与电机模型实现联合仿真。

    5)可以采用定子串电阻、转子串电阻、定子调压、定子调频等手段,但必须具备工程上的可实施性。

    6)评价指标:快速启动、制动,冲击转矩和冲击电流小,能耗小,兼顾实施的经济性。

    2、过程分析:

      由于自耦变压器启动时的K是可以调节的因此启动转矩可调,而且可以得到较小的启动电流,故采用自耦变压器降压启动。由于变频调速具有调速范围广、平滑性好、能耗小无级调速,故采用变频调速。而制动则采用反接制动,因为反馈制动用于电机的运行速度高于其同步转速与此情景不符合,能耗制动在制动的后阶段,随着转速的降低,能耗制动转矩也很快减小,因此制动效果比反接制动差。

    3、参数确定:

      由于理论推导能力的不足,仿真过程中需要的时间以及K,a,b,c只能通过修改数据一步步通过图像调试出来的。而本人调试能力有限,因此只能给出代码的模板,而里面的参数还没有确定下来。

    4、仿真代码:

    model SACIM "A Simple AC Induction Motor Model"
    type Voltage=Real(unit="V");
    type Current=Real(unit="A");
    type Resistance=Real(unit="Ohm");
    type Inductance=Real(unit="H");
    type Speed=Real(unit="r/min");
    type Torque=Real(unit="N.m");
    type Inertia=Real(unit="kg.m^2");
    type Frequency=Real(unit="Hz");
    type Flux=Real(unit="Wb");
    type Angle=Real(unit="rad");
    type AngularVelocity=Real(unit="rad/s");

    constant Real Pi = 3.1415926;

    Current i_A"A Phase Current of Stator";
    Current i_B"B Phase Current of Stator";
    Current i_C"C Phase Current of Stator";
    Voltage u_A"A Phase Voltage of Stator";
    Voltage u_B"B Phase Voltage of Stator";
    Voltage u_C"C Phase Voltage of Stator";
    Current i_a"A Phase Current of Rotor";
    Current i_b"B Phase Current of Rotor";
    Current i_c"C Phase Current of Rotor";
    Frequency f_s"Frequency of Stator";
    Torque Tm"Torque of the Motor";
    Speed n"Speed of the Motor";

    Flux Psi_A"A Phase Flux-Linkage of Stator";
    Flux Psi_B"B Phase Flux-Linkage of Stator";
    Flux Psi_C"C Phase Flux-Linkage of Stator";
    Flux Psi_a"a Phase Flux-Linkage of Rotor";
    Flux Psi_b"b Phase Flux-Linkage of Rotor";
    Flux Psi_c"c Phase Flux-Linkage of Rotor";

    Angle phi"Electrical Angle of Rotor";
    Angle phi_m"Mechnical Angle of Rotor";
    AngularVelocity w"Angular Velocity of Rotor";

    Torque Tl"Load Torque";

    Resistance Rs"Stator Resistance";
    parameter Resistance Rr=0.408"Rotor Resistance";
    parameter Inductance Ls = 0.00252"Stator Leakage Inductance";
    parameter Inductance Lr = 0.00252"Rotor Leakage Inductance";
    parameter Inductance Lm = 0.00847"Mutual Inductance";
    parameter Frequency f_N = 50"Rated Frequency of Stator";
    parameter Voltage u_N = 220"Rated Phase Voltage of Stator";
    parameter Real p =2"number of pole pairs";
    parameter Inertia Jm = 0.1"Motor Inertia";
    parameter Inertia Jl = 0.1"Load Inertia";
    parameter Real K=0.8"starting rate";
    parameter Real a=0.5438"frequency rate";
    parameter Real b=0.06891"stable frequency rate";
    parameter Real c=0.4079"another frequency rate";
    parameter Real P=0.7"stoping rate";

    initial equation

    Psi_A = 0;
    Psi_B = 0;
    Psi_C = 0;
    Psi_a = 0;
    Psi_b = 0;
    Psi_c = 0;
    phi = 0;
    w = 0;

    equation

    u_A = Rs * i_A + 1000 * der(Psi_A);
    u_B = Rs * i_B + 1000 * der(Psi_B);
    u_C = Rs * i_C + 1000 * der(Psi_C);
    = Rr * i_a + 1000 * der(Psi_a);
    = Rr * i_b + 1000 * der(Psi_b);
    = Rr * i_c + 1000 * der(Psi_c);

    Psi_A = (Lm+Ls)*i_A + (-0.5*Lm)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi))*i_a + (Lm*cos(phi+2*Pi/3))*i_b + (Lm*cos(phi-2*Pi/3))*i_c;
    Psi_B = (-0.5*Lm)*i_A + (Lm+Ls)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi-2*Pi/3))*i_a + (Lm*cos(phi))*i_b + (Lm*cos(phi+2*Pi/3))*i_c;
    Psi_C = (-0.5*Lm)*i_A + (-0.5*Lm)*i_B + (Lm+Ls)*i_C + (Lm*cos(phi+2*Pi/3))*i_a + (Lm*cos(phi-2*Pi/3))*i_b + (Lm*cos(phi))*i_c;

    Psi_a = (Lm*cos(phi))*i_A + (Lm*cos(phi-2*Pi/3))*i_B + (Lm*cos(phi+2*Pi/3))*i_C + (Lm+Lr)*i_a + (-0.5*Lm)*i_b + (-0.5*Lm)*i_c;
    Psi_b = (Lm*cos(phi+2*Pi/3))*i_A + (Lm*cos(phi))*i_B + (Lm*cos(phi-2*Pi/3))*i_C + (-0.5*Lm)*i_a + (Lm+Lr)*i_b + (-0.5*Lm)*i_c;
    Psi_c = (Lm*cos(phi-2*Pi/3))*i_A + (Lm*cos(phi+2*Pi/3))*i_B + (Lm*cos(phi))*i_C + (-0.5*Lm)*i_a + (-0.5*Lm)*i_b + (Lm+Lr)*i_c;

    Tm =-p*Lm*((i_A*i_a+i_B*i_b+i_C*i_c)*sin(phi)+(i_A*i_b+i_B*i_c+i_C*i_a)*sin(phi+2*Pi/3)+(i_A*i_c+i_B*i_a+i_C*i_b)*sin(phi-2*Pi/3));

    w = 1000 * der(phi_m);

    phi_m = phi/p;
    n= w*60/(2*Pi);

    Tm-Tl = (Jm+Jl) * 1000 * der(w);
    Tl = 10;

    if time <= 100 then
    u_A = 0;
    u_B = 0;
    u_C = 0;
    f_s = 0;Rs = 0.531;
    elseif time<=106 then
    f_s = f_N*a;

    Rs = 0.531;
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*K*a;
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*K*a;
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*K*a;
    elseif time<=1705 then
    f_s = f_N*a;

    Rs = 0.531;
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;
    elseif time<=1755 then
    f_s = f_N*a;Rs = 3;
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;
    elseif time<=2680 then
    f_s = f_N*a;Rs = 0.531;
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;
    elseif time<=3195 then
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*b;
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*b;
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*b;
    f_s = f_N*b;Rs = 0.531;
    elseif time<=3315 then
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*K*c;
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*K*c;
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*K*c;
    f_s = f_N*K*c;Rs = 0.531;

    elseif time<=4560 then
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*c;
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*c;
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*c;
    f_s = f_N*c;Rs = 0.531;
    elseif time<=4595.5 then
    f_s = f_N*P*a;Rs = 2;
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a*P;
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a*P;
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a*P;
    elseif time<=5560 then
    f_s = f_N*a;

    Rs = 0.531;
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;
    else
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*b;
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*b;
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*b;
    f_s = f_N*b;Rs = 0.531;
    end if;

    end SACIM;

    5、仿真图像

    6、仿真结果:

      整个过程用时8秒,转矩的变化较剧烈,最大转矩不超过185,最后阶段制动过程不理想,需要进一步调试

  • 相关阅读:
    Centos操作系统配置VIP以及网络
    heartbeat+nginx搭建高可用HA集群
    sudo -s/sodo -i/su root
    mysql数据库使用sql查询数据库大小及表大小
    Caffe机器学习框架
    TensorFlow实战:Chapter-4(CNN-2-经典卷积神经网络(AlexNet、VGGNet))
    深度工作:充分使用每一份脑力
    Laravel 的中大型专案架构
    python数据分析之numpy
    lumen-Permission 权限管理使用心得
  • 原文地址:https://www.cnblogs.com/wuchuan/p/5300324.html
Copyright © 2020-2023  润新知