• AbstractQueuedSynchronizer


    1 简介

    AbstractQueuedSynchronizer简称AQS是一个抽象同步框架,可以用来实现一个依赖状态的同步器。
    JDK1.5中提供的java.util.concurrent包中的大多数的同步器(Synchronizer)如Lock, Semaphore, Latch, Barrier等,这些类之间大多可以互相实现,如使用Lock实现一个Semaphore或者反过来,但是它们都是基于java.util.concurrent.locks.AbstractQueuedSynchronizer这个类的框架实现的,理解了这个稍微复杂抽象的类再去理解其他的同步器就很轻松了。

    2 原理介绍

    AQS的核心是一个线程等待队列,采用的是一个先进先出FIFO队列。用来实现一个非阻塞的同步器队列有主要有两个选择Mellor-Crummey and Scott (MCS) locks和Craig, Landin, and Hagersten (CLH) locks的变种。CLH锁更适合处理取消和超时,所以AQS基于CLH进行修改作为线程等待队列。
    CLH队列使用pred引用前节点形成一个队列,入队enqueue和出队dequeue操作都可以通过原子操作完成。

    在 AQS 内部,通过维护一个FIFO 队列来管理多线程的排队工作。在公平竞争的情况下,无法获取同步状态的线程将会被封装成一个节点,置于队列尾部。入队的线程将会通过自旋的方式获取同步状态,若在有限次的尝试后,仍未获取成功,线程则会被阻塞住。大致示意图如下:

    当头结点释放同步状态后,且后继节点对应的线程被阻塞,此时头结点线程将会去唤醒后继节点线程。后继节点线程恢复运行并获取同步状态后,会将旧的头结点从队列中移除,并将自己设为头结点。大致示意图如下:

    其中每个节点包含如下状态:

    /** waitStatus value to indicate thread has cancelled */
            static final int CANCELLED =  1;
            /** waitStatus value to indicate successor's thread needs unparking */
            static final int SIGNAL    = -1;
            /** waitStatus value to indicate thread is waiting on condition */
            static final int CONDITION = -2;
            /**
             * waitStatus value to indicate the next acquireShared should
             * unconditionally propagate
             */
            static final int PROPAGATE = -3;
    /**
    * Status field, taking on only the values:
    * SIGNAL: The successor of this node is (or will soon be)
    * blocked (via park), so the current node must
    * unpark its successor when it releases or
    * cancels. To avoid races, acquire methods must
    * first indicate they need a signal,
    * then retry the atomic acquire, and then,
    * on failure, block.
    * CANCELLED: This node is cancelled due to timeout or interrupt.
    * Nodes never leave this state. In particular,
    * a thread with cancelled node never again blocks.
    * CONDITION: This node is currently on a condition queue.
    * It will not be used as a sync queue node
    * until transferred, at which time the status
    * will be set to 0. (Use of this value here has
    * nothing to do with the other uses of the
    * field, but simplifies mechanics.)
    * PROPAGATE: A releaseShared should be propagated to other
    * nodes. This is set (for head node only) in
    * doReleaseShared to ensure propagation
    * continues, even if other operations have
    * since intervened.
    * 0: None of the above
    *
    * The values are arranged numerically to simplify use.
    * Non-negative values mean that a node doesn't need to
    * signal. So, most code doesn't need to check for particular
    * values, just for sign.
    *
    * The field is initialized to 0 for normal sync nodes, and
    * CONDITION for condition nodes. It is modified using CAS
    * (or when possible, unconditional volatile writes).
    */
    CANCELED表示线程等待已经取消,是唯一一个大于0的状态。
    SINALG表示需要唤醒next节点
    CONDITION表明线程正在等待一个条件
    PROPAGATE用于acquireShared中向后传播

    3 acquire

    /**
         * Acquires in exclusive mode, ignoring interrupts.  Implemented
         * by invoking at least once {@link #tryAcquire},
         * returning on success.  Otherwise the thread is queued, possibly
         * repeatedly blocking and unblocking, invoking {@link
         * #tryAcquire} until success.  This method can be used
         * to implement method {@link Lock#lock}.
         *
         * @param arg the acquire argument.  This value is conveyed to
         *        {@link #tryAcquire} but is otherwise uninterpreted and
         *        can represent anything you like.
         */
        public final void acquire(int arg) {
            if (!tryAcquire(arg) &&
                acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
                selfInterrupt();
        }
    

    1、如果尝试获取锁成功整个获取操作就结束,否则转到2. 尝试获取锁是通过方法tryAcquire来实现的,AQS中并没有该方法的具体实现,只是简单地抛出一个不支持操作异常,在AQS简介中谈到tryAcquire有很多实现方法,这里不再细化,只需要知道如果获取锁成功该方法返回true即可;

    2、如果获取锁失败,那么就创建一个代表当前线程的结点加入到等待队列的尾部,是通过addWaiter方法实现的,来看该方法的具体实现:

    /**
         * Creates and enqueues node for current thread and given mode.
         *
         * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
         * @return the new node
         */
        private Node addWaiter(Node mode) {
            Node node = new Node(Thread.currentThread(), mode);
            // Try the fast path of enq; backup to full enq on failure
            Node pred = tail;
            if (pred != null) {
                node.prev = pred;
                if (compareAndSetTail(pred, node)) {
                    pred.next = node;
                    return node;
                }
            }
            enq(node);
            return node;
        }
    

    该方法创建了一个独占式结点,然后判断队列中是否有元素,如果有(pred!=null)就设置当前结点为队尾结点,即将当前节点插入到尾节点的后面,然后返回;

    如果没有元素(pred==null),表示队列为空,走的是入队操作

        /**
         * Inserts node into queue, initializing if necessary. See picture above.
         * @param node the node to insert
         * @return node's predecessor
         */
        private Node enq(final Node node) {
            for (;;) {
                Node t = tail;
                if (t == null) { // Must initialize
                    if (compareAndSetHead(new Node()))
                        tail = head;
                } else {
                    node.prev = t;
                    if (compareAndSetTail(t, node)) {
                        t.next = node;
                        return t;
                    }
                }
            }
        }
    

    enq方法采用的是变种CLH算法,先看头结点是否为空,如果为空就创建一个傀儡结点,头尾指针都指向这个傀儡结点,这一步只会在队列初始化时会执行;

    如果头结点非空,就采用CAS操作将当前结点插入到头结点后面,如果在插入的时候尾结点有变化,就将尾结点向后移动直到移动到最后一个结点为止,然后再把当前结点插入到尾结点后面,尾指针指向当前结点,入队成功。

    3、将新加入的结点放入队列之后,这个结点有两种状态,要么获取锁,要么就挂起,如果这个结点不是头结点的后继节点,就看看这个结点是否应该挂起,如果应该挂起,就挂起当前结点,是否应该挂起是通过shouldParkAfterFailedAcquire方法来判断的  

        /**
         * Acquires in exclusive uninterruptible mode for thread already in
         * queue. Used by condition wait methods as well as acquire.
         *
         * @param node the node
         * @param arg the acquire argument
         * @return {@code true} if interrupted while waiting
         */
        final boolean acquireQueued(final Node node, int arg) {
            boolean failed = true;
            try {
                boolean interrupted = false;
                for (;;) {
                    final Node p = node.predecessor();
                    //判断前驱节点是否是头节点,如果是,则循环获取同步
                    if (p == head && tryAcquire(arg)) {
                        setHead(node);
                        p.next = null; // help GC
                        failed = false;
                        return interrupted;
                    }
                    //如果获取同步状态失败或者前驱节点不是头节点,则判断是否将当前节点挂起
                    if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                        interrupted = true;
                }
            } finally {
                if (failed)
                    cancelAcquire(node);
            }
        }    
    

      

        /**
         * Checks and updates status for a node that failed to acquire.
         * Returns true if thread should block. This is the main signal
         * control in all acquire loops.  Requires that pred == node.prev
         *
         * @param pred node's predecessor holding status
         * @param node the node
         * @return {@code true} if thread should block
         */
    /**
     * 该方法主要用途是,当线程在获取同步状态失败时,根据前驱节点的等待状态,决定后续的动作。比如前驱
     * 节点等待状态为 SIGNAL,表明当前节点线程应该被阻塞住了。不能老是尝试,避免 CPU 忙等。
     *    —————————————————————————————————————————————————————————————————
     *    | 前驱节点等待状态 |                   相应动作                     |
     *    —————————————————————————————————————————————————————————————————
     *    | SIGNAL         | 阻塞                                          |
     *    | CANCELLED      | 向前遍历, 移除前面所有为该状态的节点               |
     *    | waitStatus < 0 | 将前驱节点状态设为 SIGNAL, 并再次尝试获取同步状态   |
     *    —————————————————————————————————————————————————————————————————
     */
        private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
            int ws = pred.waitStatus;
            //首先检查前趋结点的waitStatus位,如果为SIGNAL,表示前趋结点会通知它,那么它可以放心大胆地挂起了
            if (ws == Node.SIGNAL)
                /*
                 * This node has already set status asking a release
                 * to signal it, so it can safely park.
                 */
                return true;
            if (ws > 0) {
                /*
                 * Predecessor was cancelled. Skip over predecessors and
                 * indicate retry.
                 */
                //如果前趋结点是一个被取消的结点怎么办呢?那么就向前遍历跳过被取消的结点,直到找到一个没有被取消的结点为止,将找到的这个结点作为它的前趋结点,
           //将找到的这个结点的waitStatus位设置为SIGNAL,返回false表示线程不应该被挂起,继续尝试获取锁 do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ /* * 等待状态为 0 或 PROPAGATE,设置前驱节点等待状态为 SIGNAL, * 并再次尝试获取同步状态。 */ compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; }
    private final boolean parkAndCheckInterrupt() {
        // 调用 LockSupport.park 阻塞自己
        LockSupport.park(this);
        return Thread.interrupted();
    }
    

     4 release

        /**
         * Releases in exclusive mode.  Implemented by unblocking one or
         * more threads if {@link #tryRelease} returns true.
         * This method can be used to implement method {@link Lock#unlock}.
         *
         * @param arg the release argument.  This value is conveyed to
         *        {@link #tryRelease} but is otherwise uninterpreted and
         *        can represent anything you like.
         * @return the value returned from {@link #tryRelease}
         */
        public final boolean release(int arg) {
            if (tryRelease(arg)) {
                Node h = head;
                if (h != null && h.waitStatus != 0)
                    unparkSuccessor(h);
                return true;
            }
            return false;
        }
    

      

    1、release过程比acquire要简单,首先调用tryRelease释放锁,如果释放失败,直接返回;

    2、释放锁成功后需要唤醒继任结点,是通过方法unparkSuccessor实现的

        /**
         * Wakes up node's successor, if one exists.
         *
         * @param node the node
         */
        private void unparkSuccessor(Node node) {
            /*
             * If status is negative (i.e., possibly needing signal) try
             * to clear in anticipation of signalling.  It is OK if this
             * fails or if status is changed by waiting thread.
             */
            int ws = node.waitStatus;
            if (ws < 0)
                compareAndSetWaitStatus(node, ws, 0);
    
            /*
             * Thread to unpark is held in successor, which is normally
             * just the next node.  But if cancelled or apparently null,
             * traverse backwards from tail to find the actual
             * non-cancelled successor.
             */
            Node s = node.next;
            if (s == null || s.waitStatus > 0) {
                s = null;
                for (Node t = tail; t != null && t != node; t = t.prev)
                    if (t.waitStatus <= 0)
                        s = t;
            }
            if (s != null)
                LockSupport.unpark(s.thread);
        }
    

    1、node参数传进来的是头结点,首先检查头结点的waitStatus位,如果为负,表示头结点还需要通知后继结点,这里不需要头结点去通知后继,因此将该该标志位清0.

    2、然后查看头结点的下一个结点,如果下一个结点不为空且它的waitStatus<=0,表示后继结点没有被取消,是一个可以唤醒的结点,于是唤醒后继结点返回;如果后继结点为空或者被取消了怎么办?寻找下一个可唤醒的结点,然后唤醒它返回。

    这里并没有从头向尾寻找,从队列尾部开始向前查找,找到队列最前面没有被取消的节点,然后,将其唤醒。

    为什么需要从队列尾部开始向前查找呢?

    因为在CLH队列中的结点随时有可能被中断,被中断的结点的waitStatus设置为CANCEL,而且它会被踢出CLH队列,如何个踢出法,就是它的前趋结点的next并不会指向它,而是指向下一个非CANCEL的结点,而它自己的next指针指向它自己。一旦这种情况发生,如何从头向尾方向寻找继任结点会出现问题,因为一个CANCEL结点的next为自己,那么就找不到正确的继任接点。

    有的人又会问了,CANCEL结点的next指针为什么要指向它自己,为什么不指向真正的next结点?为什么不为NULL?

    第一个问题的答案是这种被CANCEL的结点最终会被GC回收,如果指向next结点,GC无法回收。

  • 相关阅读:
    L1-047 装睡 (10分)
    QT 文件的读写,将txt中的数据存储到QVector
    C++Primer第五版 第十二章 动态内存
    C++Primer第五版 第十一章 关联容器
    从《上瘾》到 《不被干扰》
    MySQL模糊查询用法(正则、通配符、内置函数等)
    MySQL-SQL优化总结
    MySQL中特别实用的几种SQL语句
    public、private、protected 和 default
    DO,DTO,VO,POJO详解
  • 原文地址:https://www.cnblogs.com/wuchanming/p/9208496.html
Copyright © 2020-2023  润新知