• 第十六章 贪心算法——活动选择问题


    前言:贪心算法也是用来解决最优化问题,将一个问题分成子问题,在现在子问题最优解的时,选择当前看起来是最优的解,期望通过所做的局部最优选择来产生一个全局最优解。书中先从活动选择问题来引入贪心算法,分别采用动态规划方法和贪心算法进行分析。本篇笔记给出活动选择问题的详细分析过程,并给出详细的实现代码进行测试验证。关于贪心算法的详细分析过程,下次在讨论。

    1、活动选择问题描述

        有一个需要使用每个资源的n个活动组成的集合S= {a1,a2,···,an },资源每次只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi,且 0≤si<fi<∞ 。一旦被选择后,活动ai就占据半开时间区间[si,fi)如果[si,fi]和[sj,fj]互不重叠,则称ai和aj两个活动是兼容的。该问题就是要找出一个由互相兼容的活动组成的最大子集。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。

    从图中可以看出S中共有11个活动,最大的相互兼容的活动子集为:{a1,a4,a8,a11,}和{a2,a4,a9,a11}。

    2、动态规划解决过程

    (1)活动选择问题的最优子结构

    定义子问题解空间Sij是S的子集,其中的每个获得都是互相兼容的。即每个活动都是在ai结束之后开始,且在aj开始之前结束。

    为了方便讨论和后面的计算,添加两个虚构活动a0和an+1,其中f0=0,sn+1=∞。

    结论:当i≥j时,Sij为空集。

    如果活动按照结束时间单调递增排序,子问题空间被用来从Sij中选择最大兼容活动子集,其中0≤i<j≤n+1,所以其他的Sij都是空集。

    最优子结构为:假设Sij的最优解Aij包含活动ak,则对Sik的解Aik和Skj的解Akj必定是最优的。

    通过一个活动ak将问题分成两个子问题,下面的公式可以计算出Sij的解Aij

    (2)一个递归解

      设c[i][j]为Sij中最大兼容子集中的活动数目,当Sij为空集时,c[i][j]=0;当Sij非空时,若ak在Sij的最大兼容子集中被使用,则则问题Sik和Skj的最大兼容子集也被使用,故可得到c[i][j] = c[i][k]+c[k][j]+1。

    当i≥j时,Sij必定为空集,否则Sij则需要根据上面提供的公式进行计算,如果找到一个ak,则Sij非空(此时满足fi≤sk且fk≤sj),找不到这样的ak,则Sij为空集。

    c[i][j]的完整计算公式如下所示:

     

    3、贪心算法解决过程

    针对活动选择问题,认真分析可以得出以下定理:对于任意非空子问题Sij,设am是Sij中具有最早结束时间的活动,那么:

    (1)活动am在Sij中的某最大兼容活动子集中被使用。

    (2)子问题Sim为空,所以选择am将使子问题Smj为唯一可能非空的子问题。

    有这个定理,就简化了问题,使得最优解中只使用一个子问题,在解决子问题Sij时,在Sij中选择最早结束时间的那个活动。

    贪心算法自顶向下地解决每个问题,解决子问题Sij,先找到Sij中最早结束的活动am,然后将am添加到最优解活动集合中,再来解决子问题Smj

    基于这种思想可以采用递归和迭代进行实现。递归实现过程如下所示:

    void recursive_activity_selector(int *s,int* f,int i,int n,int *ret)
    {
         int *ptmp = ret;
         int m = i+1;
         //在Sin中寻找第一个结束的活动 
         while(m<=n && s[m] < f[i])
            m = m+1;
         if(m<=n)
         {
            *ptmp++ = m;  //添加到结果中 
            recursive_activity_selector(s,f,m,n,ptmp);
         }
    }

    迭代实现过程如下:

    void greedy_activity_selector(int *s,int *f,int *ret)
    {
      int i,m;
      *ret++ = 1;
      i =1;
      for(m=2;m<=N;m++)
        if(s[m] >= f[i])
        {
           *ret++ = m;
           i=m;
        }
    }

    完整C++代码:

    #include<iostream>
    using namespace std;
    
    const int N=11;
    int ret[11]={0};
    static int num=0;
    void recursive_activity_selector(int *s,int *f,int i,int n)
    {
        int m=i+1;
        while(m<=n&&f[i]>s[m])
            m=m+1;
        if(m<=n)
        {
            ret[num++]=m;
            recursive_activity_selector(s,f,m,n);
        }
    }
    
    void greedy_activity_selector(int *s,int *f,int i,int n)
    {
        int m=i+1;
        while(m<=n)
        {
            if(f[i]<=s[m])
            {
                ret[num++]=m;
                i=m;
            }
            m++;
        }
    }
    
    int main()
    {
        int s[N+1] = {-1,1,3,0,5,3,5,6,8,8,2,12};
        int f[N+1] = {-1,4,5,6,7,8,9,10,11,12,13,14};
        int i;
        recursive_activity_selector(s,f,0,N);
        cout<<"最大子集为: "<<endl;
        for(i=0;i<N;i++)
        {
           if(ret[i] != 0)
             cout<<ret[i]<<" ";
        }
        return 0;
    }

    运行结果:

  • 相关阅读:
    创建一个简单的vue.js项目
    安装VM
    安装postgreSQL
    读取pgsql扫描失败
    adb install 安装apk时报错Failure [INSTALL_FAILED_TEST_ONLY]解决方法
    「工具分享」Checker Script for Linux
    「V 曲闲谈」《万物与我同归于寂》——终与始
    Note / Solution Set 「Binomial Sum」两道例题
    Solution Set 「NOIP Simu.」20221014
    Solution Set 「NOIP Simu.」20221024
  • 原文地址:https://www.cnblogs.com/wuchanming/p/4080203.html
Copyright © 2020-2023  润新知