• opencv实战-全景图像拼接


    一、全景图像拼接步骤

    1、使用SIFT算法寻找关键特征点

    2、建立BFMatcher匹配器将图片特征点进行匹配

    3、特征点多于4个则可以计算视角变换矩阵

    4、将图片经过变换矩阵变换

    5、图片变换过后进行拼接

    二、参考代码

    import numpy as np
    import cv2
    
    class Stitcher:
        # 拼接函数
        def stitch(self, images, ratio=0.75, reprojThresh=4.0, showMatches=False):
            # 获取输入图片
            (imageB, imageA) = images
            # 检测A、B图片的SIFT关键特征点,并计算特征描述子
            (kpsA, featuresA) = self.detectAndDescribe(imageA)
            (kpsB, featuresB) = self.detectAndDescribe(imageB)
            # 匹配两张图片的所有特征点,返回匹配结果
            M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)
            # 如果返回结果为空,没有匹配成功的特征点,退出算法
            if M is None:
                return None
            # 否则,提取匹配结果
            # H是3x3视角变换矩阵
            (matches, H, status) = M
            # 将图片A进行视角变换,result是变换后图片
            result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
            self.cv_show('result1', result)
            # 将图片B传入result图片最左端
            result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
            self.cv_show('result2', result)
            # 检测是否需要显示图片匹配
            if showMatches:
                # 生成匹配图片
                vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)
                # 返回结果
                return (result, vis)
            # 返回匹配结果
            return result
    
        def cv_show(self, name, img):
            cv2.imshow(name, img)
            cv2.waitKey(0)
            cv2.destroyAllWindows()
    
        def detectAndDescribe(self, image):
            # 将彩色图片转换成灰度图
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            # 建立SIFT生成器
            descriptor = cv2.xfeatures2d.SIFT_create()
            # 检测SIFT特征点,并计算描述子
            (kps, features) = descriptor.detectAndCompute(image, None)
            # 将结果转换成NumPy数组
            kps = np.float32([kp.pt for kp in kps])
            # 返回特征点集,及对应的描述特征
            return (kps, features)
    
        def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):
            # 建立暴力匹配器
            matcher = cv2.BFMatcher()
            # 使用KNN检测来自A、B图的SIFT特征匹配对,K=2
            rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
            matches = []
            for m in rawMatches:
                # 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对
                if len(m) == 2 and m[0].distance < m[1].distance * ratio:
                    # 存储两个点在featuresA, featuresB中的索引值, 既是特征点的索引值
                    matches.append((m[0].trainIdx, m[0].queryIdx))
            # 当筛选后的匹配对大于4时,计算视角变换矩阵
            if len(matches) > 4:
                # 获取匹配对的点坐标
                ptsA = np.float32([kpsA[i] for (_, i) in matches])
                ptsB = np.float32([kpsB[i] for (i, _) in matches])
                # 计算视角变换矩阵
                (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)
                # 返回结果
                return (matches, H, status)
            # 如果匹配对小于4时,返回None
            return None
    
        def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
            # 初始化可视化图片,将A、B图左右连接到一起
            (hA, wA) = imageA.shape[:2]
            (hB, wB) = imageB.shape[:2]
            vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
            vis[0:hA, 0:wA] = imageA
            vis[0:hB, wA:] = imageB
            # 联合遍历,画出匹配对
            for ((trainIdx, queryIdx), s) in zip(matches, status):
                # 当点对匹配成功时,画到可视化图上
                if s == 1:
                    # 画出匹配对
                    ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
                    ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
                    cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
            # 返回可视化结果
            return vis
    
    if __name__ == '__main__':
        imageA = cv2.imread("left_01.png")
        imageB = cv2.imread("right_01.png")
        stitcher = Stitcher()
        (result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)
        cv2.imshow("Keypoint Matches", vis)
        cv2.imshow("Result", result)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
  • 相关阅读:
    转:关于国外硕博士论文搜索和下载的讨论
    转:如何查找别人论文(计算机类文献)中实验的代码?
    jQuery基础知识二
    jQuery基础知识笔记一
    jQuery基础知识一
    JS知识回顾
    JS的DOM(获取元素、元素属性、value属性、显示时间、计时器、节点增删改查等)
    JS基础知识三(正则表达式、arguments变量、JS事件、onsubmit事件、各种对象)
    JS基础知识小结二
    JS基础知识二(函数、全局/局部变量、对象、方法)
  • 原文地址:https://www.cnblogs.com/wu-wu/p/14043184.html
Copyright © 2020-2023  润新知