#include<algorithm> using namespace std; #define maxs 200005 struct Point { double x,y; }point[maxs]; int y_sort[maxs]; int cmpx(Point a,Point b)//按照x对这些点从小到大排序 { return a.x<b.x; } int cmpy(int a,int b)//对最近点算法中的y_sort数组排序 { return point[a].y<point[b].y; } double dis(Point a,Point b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } /* 最近点对算法,在point[first]--point[last]个点中寻找一个最短距离 使用该算法前先对这些点排序 sort(point,point+n,cmpx); */ double findMin(int first, int last) { if((last-first)==1) return dis(point[first],point[last]); else if(last-first==2) { double d1 = dis(point[first],point[first+1]); double d2 = dis(point[first],point[first+2]); double d3 = dis(point[first+1],point[first+2]); return min(min(d1,d2),d3); } //二分 int mid = (first+last)/2; double min_dist = min(findMin(first,mid),findMin(mid+1,last)); if(min_dist==0) return 0; int y_end = 0; for(int i=mid;point[mid].x-point[i].x<min_dist&&i>=first;i--) y_sort[y_end++]=i; for(int i=mid+1;point[i].x-point[mid+1].x<min_dist&&i<=last;i++) y_sort[y_end++]=i; sort(y_sort,y_sort+y_end,cmpy); for(int i=0;i<y_end;i++) for(int j=i+1;j<y_end&&(point[y_sort[j]].y-point[y_sort[i]].y)<min_dist;j++) min_dist=min(min_dist,dis(point[y_sort[i]],point[y_sort[j]])); return min_dist; }
poj3714
题目大意:
有若干车站和加油站,求车站和加油站的最小距离.
思路:
求最近点对,注意的是需要对车站和加油站分类,同类的话就初始化为INF
这样就不会找到相同类间的距离了,从而只会得到车站和加油站的最小距离
#include <iostream> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define maxs 200005 #define INF 1e100 struct Point { double x,y; bool flag; }point[maxs]; int y_sort[maxs]; int cmpx(Point a,Point b)//按照x对这些点从小到大排序 { return a.x<b.x; } int cmpy(int a,int b)//对最近点算法中的y_sort数组排序 { return point[a].y<point[b].y; } double dis(Point a,Point b) { if(a.flag!=b.flag) return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); return INF;//是同一类,初始化为无穷大,这样最近点对算法就不会找同类的最短距离 } /* 最近点对算法,在point[first]--point[last]个点中寻找一个最短距离 使用该算法前先对这些点排序 sort(point,point+n,cmpx); */ double findMin(int first, int last) { if((last-first)==1) return dis(point[first],point[last]); else if(last-first==2) { double d1 = dis(point[first],point[first+1]); double d2 = dis(point[first],point[first+2]); double d3 = dis(point[first+1],point[first+2]); return min(min(d1,d2),d3); } //二分 int mid = (first+last)/2; double min_dist = min(findMin(first,mid),findMin(mid+1,last)); if(min_dist==0) return 0; int y_end = 0; for(int i=mid;point[mid].x-point[i].x<min_dist&&i>=first;i--) y_sort[y_end++]=i; for(int i=mid+1;point[i].x-point[mid+1].x<min_dist&&i<=last;i++) y_sort[y_end++]=i; sort(y_sort,y_sort+y_end,cmpy); for(int i=0;i<y_end;i++) for(int j=i+1;j<y_end&&(point[y_sort[j]].y-point[y_sort[i]].y)<min_dist;j++) min_dist=min(min_dist,dis(point[y_sort[i]],point[y_sort[j]])); return min_dist; } int main() { //freopen("in.txt","r",stdin); int T,n; cin>>T; while(T--) { scanf("%d",&n); for(int i=0;i<n;i++) { scanf("%lf%lf",&point[i].x,&point[i].y); point[i].flag=true; } for(int i=n;i<2*n;i++) { scanf("%lf%lf",&point[i].x,&point[i].y); point[i].flag=false; } n=2*n; sort(point,point+n,cmpx);//排序 double ans = findMin(0,n-1); printf("%0.3f ",ans); } return 0; }