• 动态规划入门


    动态规划入门:

    转载自:http://hawstein.com/2013/03/26/dp-novice-to-advanced/

    什么是动态规划,我们要如何描述它?

    动态规划算法通常基于一个递推公式及一个或多个初始状态。 当前子问题的解将由上一次子问题的解推出。使用动态规划来解题只需要多项式时间复杂度, 因此它比回溯法、暴力法等要快许多。

    现在让我们通过一个例子来了解一下DP的基本原理。

    首先,我们要找到某个状态的最优解,然后在它的帮助下,找到下一个状态的最优解。

    “状态”代表什么及如何找到它?

    “状态”用来描述该问题的子问题的解。原文中有两段作者阐述得不太清楚,跳过直接上例子。

    如果我们有面值为1元、3元和5元的硬币若干枚,如何用最少的硬币凑够11元? (表面上这道题可以用贪心算法,但贪心算法无法保证可以求出解,比如1元换成2元的时候)

    首先我们思考一个问题,如何用最少的硬币凑够i元(i<11)?为什么要这么问呢? 两个原因:1.当我们遇到一个大问题时,总是习惯把问题的规模变小,这样便于分析讨论。 2.这个规模变小后的问题和原来的问题是同质的,除了规模变小,其它的都是一样的, 本质上它还是同一个问题(规模变小后的问题其实是原问题的子问题)。

    好了,让我们从最小的i开始吧。当i=0,即我们需要多少个硬币来凑够0元。 由于1,3,5都大于0,即没有比0小的币值,因此凑够0元我们最少需要0个硬币。 (这个分析很傻是不是?别着急,这个思路有利于我们理清动态规划究竟在做些什么。) 这时候我们发现用一个标记来表示这句“凑够0元我们最少需要0个硬币。”会比较方便, 如果一直用纯文字来表述,不出一会儿你就会觉得很绕了。那么, 我们用d(i)=j来表示凑够i元最少需要j个硬币。于是我们已经得到了d(0)=0, 表示凑够0元最小需要0个硬币。当i=1时,只有面值为1元的硬币可用, 因此我们拿起一个面值为1的硬币,接下来只需要凑够0元即可,而这个是已经知道答案的, 即d(0)=0。所以,d(1)=d(1-1)+1=d(0)+1=0+1=1。当i=2时, 仍然只有面值为1的硬币可用,于是我拿起一个面值为1的硬币, 接下来我只需要再凑够2-1=1元即可(记得要用最小的硬币数量),而这个答案也已经知道了。 所以d(2)=d(2-1)+1=d(1)+1=1+1=2。一直到这里,你都可能会觉得,好无聊, 感觉像做小学生的题目似的。因为我们一直都只能操作面值为1的硬币!耐心点, 让我们看看i=3时的情况。当i=3时,我们能用的硬币就有两种了:1元的和3元的( 5元的仍然没用,因为你需要凑的数目是3元!5元太多了亲)。 既然能用的硬币有两种,我就有两种方案。如果我拿了一个1元的硬币,我的目标就变为了: 凑够3-1=2元需要的最少硬币数量。即d(3)=d(3-1)+1=d(2)+1=2+1=3。 这个方案说的是,我拿3个1元的硬币;第二种方案是我拿起一个3元的硬币, 我的目标就变成:凑够3-3=0元需要的最少硬币数量。即d(3)=d(3-3)+1=d(0)+1=0+1=1. 这个方案说的是,我拿1个3元的硬币。好了,这两种方案哪种更优呢? 记得我们可是要用最少的硬币数量来凑够3元的。所以, 选择d(3)=1,怎么来的呢?具体是这样得到的:d(3)=min{d(3-1)+1, d(3-3)+1}。

    OK,码了这么多字讲具体的东西,让我们来点抽象的。从以上的文字中, 我们要抽出动态规划里非常重要的两个概念:状态和状态转移方程。

    上文中d(i)表示凑够i元需要的最少硬币数量,我们将它定义为该问题的”状态”, 这个状态是怎么找出来的呢?我在另一篇文章 动态规划之背包问题(一)中写过: 根据子问题定义状态。你找到子问题,状态也就浮出水面了。 最终我们要求解的问题,可以用这个状态来表示:d(11),即凑够11元最少需要多少个硬币。 那状态转移方程是什么呢?既然我们用d(i)表示状态,那么状态转移方程自然包含d(i), 上文中包含状态d(i)的方程是:d(3)=min{d(3-1)+1, d(3-3)+1}。没错, 它就是状态转移方程,描述状态之间是如何转移的。当然,我们要对它抽象一下,

    d(i)=min{ d(i-vj)+1 },其中i-vj >=0,vj表示第j个硬币的面值;

    有了状态和状态转移方程,这个问题基本上也就解决了。当然了,Talk is cheap,show me the code!

    伪代码如下:

    1 Set Min[i] equal to Infinity for all of i
    2 Min[0] = 0;
    3 For i = 1 to S
    4 For j = 0 to N-1
    5     if (Vj<=i AND Min[i-Vj]+1<Min[i] )
    6     {
    7         Then Min[i] = Min[i-Vj]+1;
    8     }
    9 output Min[S];

    本题代码如下:

     1 # include <iostream>
     2 # include <cstdio>
     3 using namespace std;
     4 
     5 int value[4] = {0, 1, 3, 5};
     6 int main()
     7 {
     8     int min[12];
     9     for( int i=0; i<12; i++ )
    10     {
    11         min[i] = 100;
    12     }
    13     min[0] = 0;
    14     for( int i=0; i<12; i++ )
    15     {
    16         for( int j=1; j<4; j++ )
    17         {
    18             if( value[j]<=i && min[i-value[j]]+1<min[i] )
    19             {
    20                 min[i] = min[i-value[j]] + 1;
    21             }
    22         }
    23     }
    24     for( int i=0; i<12; i++ )
    25     {
    26         cout<<min[i]<<' ';
    27     }
    28     return 0;
    29 }
  • 相关阅读:
    16. 3Sum Closest
    17. Letter Combinations of a Phone Number
    20. Valid Parentheses
    77. Combinations
    80. Remove Duplicates from Sorted Array II
    82. Remove Duplicates from Sorted List II
    88. Merge Sorted Array
    257. Binary Tree Paths
    225. Implement Stack using Queues
    113. Path Sum II
  • 原文地址:https://www.cnblogs.com/wsy107316/p/10730952.html
Copyright © 2020-2023  润新知