• 4455[Zjoi2016]小星星 容斥+dp


    4455: [Zjoi2016]小星星

    Time Limit: 10 Sec  Memory Limit: 512 MB
    Submit: 527  Solved: 317
    [Submit][Status][Discuss]

    Description

    小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品。她有n颗小星星,用m条彩色的细线串了起来,每条细

    线连着两颗小星星。有一天她发现,她的饰品被破坏了,很多细线都被拆掉了。这个饰品只剩下了n?1条细线,但

    通过这些细线,这颗小星星还是被串在一起,也就是这些小星星通过这些细线形成了树。小Y找到了这个饰品的设

    计图纸,她想知道现在饰品中的小星星对应着原来图纸上的哪些小星星。如果现在饰品中两颗小星星有细线相连,

    那么要求对应的小星星原来的图纸上也有细线相连。小Y想知道有多少种可能的对应方式。只有你告诉了她正确的

    答案,她才会把小饰品做为礼物送给你呢。

    Input

    第一行包含个2正整数n,m,表示原来的饰品中小星星的个数和细线的条数。

    接下来m行,每行包含2个正整数u,v,表示原来的饰品中小星星u和v通过细线连了起来。

    这里的小星星从1开始标号。保证u≠v,且每对小星星之间最多只有一条细线相连。

    接下来n-1行,每行包含个2正整数u,v,表示现在的饰品中小星星u和v通过细线连了起来。

    保证这些小星星通过细线可以串在一起。

    n<=17,m<=n*(n-1)/2

    Output

    输出共1行,包含一个整数表示可能的对应方式的数量。

    如果不存在可行的对应方式则输出0。

    Sample Input

    4 3
    1 2
    1 3
    1 4
    4 1
    4 2
    4 3

    Sample Output

    6

    HINT

    题解:JudgeOnline/upload/201603/4455.txt

     

    容斥原理+dp计数
    二进制状态枚举有哪些编号可以给树上,且让编号可重复
    树形dp统计出这样编号的方案后,可以考虑容斥原理减去编号重复的方案
    所有号都编-1个号不编+2个号不编...

    树形dp很简单 f[i][j]表示在i的子树,节点i编号为j的方案
    枚举一下儿子编号,判断两个编号是否符合原图有边再转移即可
    推荐blog
    http://blog.csdn.net/neither_nor/article/details/51729329

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #define mod
    #define ll long long
    #define N 25
    using namespace std;
    int n,m,tot,cnt,hd[N],a[N],mp[N][N];ll ans,f[N][N];
    struct edge{int v,next;}e[N<<1];
    void adde(int u,int v){
        e[++tot].v=v;
        e[tot].next=hd[u];
        hd[u]=tot;
    }
    void dp(int u,int fa){
        for(int i=hd[u];i;i=e[i].next){
            int v=e[i].v;
            if(v==fa)continue;
            dp(v,u);
        }
        for(int i=1;i<=cnt;i++){
            f[u][i]=1;
            for(int j=hd[u];j;j=e[j].next){
                int v=e[j].v;
                if(v==fa)continue;
                ll t=0;
                for(int k=1;k<=cnt;k++)
                if(mp[a[i]][a[k]])t+=f[v][k];
                f[u][i]*=t;
            }
        }
    }
    int main(){
        scanf("%d%d",&n,&m);
        for(int i=1;i<=m;i++){
            int x,y;scanf("%d%d",&x,&y);
            mp[x][y]=mp[y][x]=1;
        }
        for(int i=1;i<n;i++){
            int x,y;
            scanf("%d%d",&x,&y);
            adde(x,y);adde(y,x);
        }
        int all=1<<n;
        for(int i=1;i<all;i++){
            cnt=0;
            for(int j=0;j<n;j++)if(i&(1<<j))a[++cnt]=j+1;
            dp(1,0);ll t=0;
            for(int i=1;i<=cnt;i++)
            t+=f[1][i];
            ans+=t*((n-cnt)&1?-1:1);
        }
        cout<<ans;
        return 0;
    }
  • 相关阅读:
    敏捷开发(五)- 框架SCRUM内容
    敏捷开发(四)- 故事验收测试
    敏捷开发(三)- 估算故事
    敏捷开发(二)- 编写故事
    敏捷开发(一)- 搜集故事
    项目管理(十)- 开发准备列表
    项目管理(九)- 组织项目资源
    web 前端常用组件【04】Datetimepicker 和 Lodop
    让时间处理简单化 【第三方扩展类库org.apache.commons.lang.time】
    Word 打包 zip 并提供下载
  • 原文地址:https://www.cnblogs.com/wsy01/p/8027091.html
Copyright © 2020-2023  润新知