• 计算几何:矩形面积并模板


    点击查看折叠代码块
    //两多边形面积交,并模板
    //输入n,n个点逆时针输入
    //输入m,m个点逆时针输入
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    const int maxn = 300;
    const double eps = 1e-8;
    const double pi = acos(-1.0);
    int dcmp(double x)
    {
        if(x > eps) return 1;
        return x < -eps ? -1 : 0;
    }
    struct Point
    {
        double x, y;
    };
    double cross(Point a,Point b,Point c) ///叉积
    {
        return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
    }
    Point intersection(Point a,Point b,Point c,Point d)
    {
        Point p = a;
        double t =((a.x-c.x)*(c.y-d.y)-(a.y-c.y)*(c.x-d.x))/((a.x-b.x)*(c.y-d.y)-(a.y-b.y)*(c.x-d.x));
        p.x +=(b.x-a.x)*t;
        p.y +=(b.y-a.y)*t;
        return p;
    }
    double PolygonArea(Point p[], int n)
    {
        if(n < 3) return 0.0;
        double s = p[0].y * (p[n - 1].x - p[1].x);
        p[n] = p[0];
        for(int i = 1; i < n; ++ i)
            s += p[i].y * (p[i - 1].x - p[i + 1].x);
        return fabs(s * 0.5);
    }
    double CPIA(Point a[], Point b[], int na, int nb)//ConvexPolygonIntersectArea
    {
        Point p[20], tmp[20];
        int tn, sflag, eflag;
        a[na] = a[0], b[nb] = b[0];
        memcpy(p,b,sizeof(Point)*(nb + 1));
        for(int i = 0; i < na && nb > 2; i++)
        {
            sflag = dcmp(cross(a[i + 1], p[0],a[i]));
            for(int j = tn = 0; j < nb; j++, sflag = eflag)
            {
                if(sflag>=0) tmp[tn++] = p[j];
                eflag = dcmp(cross(a[i + 1], p[j + 1],a[i]));
                if((sflag ^ eflag) == -2)
                    tmp[tn++] = intersection(a[i], a[i + 1], p[j], p[j + 1]); ///求交点
            }
            memcpy(p, tmp, sizeof(Point) * tn);
            nb = tn, p[nb] = p[0];
        }
        if(nb < 3) return 0.0;
        return PolygonArea(p, nb);
    }
    double SPIA(Point a[], Point b[], int na, int nb)///此函数中的 res 为两多边形相交面积
    {
        int i, j;
        Point t1[4], t2[4];
        double res = 0, num1, num2;
        a[na] = t1[0] = a[0], b[nb] = t2[0] = b[0];
        for(i = 2; i < na; i++)
        {
            t1[1] = a[i-1], t1[2] = a[i];
            num1 = dcmp(cross(t1[1], t1[2],t1[0]));
            if(num1 < 0) swap(t1[1], t1[2]);
            for(j = 2; j < nb; j++)
            {
                t2[1] = b[j - 1], t2[2] = b[j];
                num2 = dcmp(cross(t2[1], t2[2],t2[0]));
                if(num2 < 0) swap(t2[1], t2[2]);
                res += CPIA(t1, t2, 3, 3) * num1 * num2;
            }
        }
        return res;
    }
    Point p1[maxn], p2[maxn];
    int n1, n2;
    int main(){
        int t = 1;
        while(scanf("%d", &n1) != EOF)
        {
            for(int i = 0; i < n1; i++) scanf("%lf%lf", &p1[i].x, &p1[i].y);
            scanf("%d",&n2);
            for(int i = 0; i < n2; i++) scanf("%lf%lf", &p2[i].x, &p2[i].y);
            double Area = SPIA(p1, p2, n1, n2);
            //double Area1 = PolygonArea(p1,n1)+PolygonArea(p2,n2);
            //printf("%lf %lf
    ",Area,Area1);
            ///printf("%f
    ",Area);
            if(Area<eps) printf("Case %d: No
    ",t++);
            else printf("Case %d: Yes
    ",t++);
        }
        return 0;
    }
    
    
    你将不再是道具,而是成为人如其名的人
  • 相关阅读:
    webstorm & phpstorm破解
    JSON和JSONP
    angular.extend(dst, src)对象拓展
    angular.foreach 循环方法使用指南
    angular 指令@、=、&的用法和区别
    angular directive指令相互独立
    angular directive指令的复用
    对apply和call的理解
    图片上传
    vue 路由缓存
  • 原文地址:https://www.cnblogs.com/wsl-lld/p/13393473.html
Copyright © 2020-2023  润新知