• matlab实现共轭梯度法、多元牛顿法、broyden方法


    共轭梯度法:

    function [ x, r, k ] = CorGrant( x0, A, b )
        x = x0;
        r = b - A * x0;
        d = r;
        X = ones(length(x), 1);
        k = 0;
        while 1
            if norm(r, Inf)<1e-6
                break
            end
            k = k + 1;
            
            arf = (r' * r) / (d' * A * d);
            x = x + arf * d;
            r2 = r - arf * A * d;
            brt = (r2' * r2) / (r' * r);
            d = r2 + brt * d;
            
            r = r2;
        end
    
    end
    

    About the code:

    • A : the input A of Ax = b
    • b : the input b of Ax = b
    • x0 : the input guess of x
    • x : the output x of Ax = b
    • r : the remainder between calculation x and exact x
    • k : calculation times

    多元牛顿方法:
    使用了共轭梯度法来辅助,其中需要用到雅可比矩阵

    function [x] = Multi_Newdd(x0, df1_1, df1_2, df2_1, df2_2, f1, f2, k)
        x = x0;
        n = length(x0);
        for i = 1 : k
           A = DF(df1_1, df1_2, df2_1, df2_2, x);
           b = -1 * F(f1, f2, x);
           s = CorGrant_ForNewdd(zeros(n, 1), A, b, 7); 
           x = x + s;
        end
    end
    
    function [ x ] = CorGrant_ForNewdd( x0, A, b, k )
        x = x0;
        r = b - A * x0;
        d = r;
        X = ones(length(x), 1);
        for i = 1 : k
            
            arf = (r' * r) / (d' * A * d);
            x = x + arf * d;
            r2 = r - arf * A * d;
            brt = (r2' * r2) / (r' * r);
            d = r2 + brt * d;
            
            r = r2;
        end
    
    end
    
    function [x] = DF(df1_1, df1_2, df2_1, df2_2, x0)
        x = zeros(length(x0), length(x0));
        x(1, 1) = df1_1(x0(1, 1), x0(2, 1));
        x(1, 2) = df1_2(x0(1, 1), x0(2, 1));
        x(2, 1) = df2_1(x0(1, 1), x0(2, 1));
        x(2, 2) = df2_2(x0(1, 1), x0(2, 1));
    end
    
    function [x] = F(f1, f2, x0)
        x = zeros(length(x0), 1);
        x(1, 1) = f1(x0(1, 1), x0(2, 1));
        x(2, 1) = f2(x0(1, 1), x0(2, 1));
    end
    

    About the code:

    • f1 : the input handle of Function F
    • f2 : the input handle of Function F
    • df1_1 : the input handle of Function DF
    • df1_2 : the input handle of Function DF
    • df2_1 : the input handle of Function DF
    • df2_2 : the input handle of Function DF
    • x0 : the input guess of x
    • x : the output x of Ax = b
    • k : calculation times

    例子:

    clear all
    clc
    
    f1 = @(u, v) 6*u^3+u*v-3*v^3-4;
    f2 = @(u, v) u^2-18*u*v^2+16*v^3+1;
    
    df1_1 = @(u, v) 18*u^2+v;
    df1_2 = @(u, v) u-9*v^2;
    df2_1 = @(u, v) 2*u-18*v^2;
    df2_2 = @(u, v) -36*u*v+48*v^2;
    
    n = 2;
    k = 7;
    x0_1 = [1.15; 1.15];
    x0_2 = [2; 2];
    x0_3 = [3; 3];
    
    x1 = Multi_Newdd(x0_1, df1_1, df1_2, df2_1, df2_2, f1, f2, k)
    x2 = Multi_Newdd(x0_2, df1_1, df1_2, df2_1, df2_2, f1, f2, k)
    x3 = Multi_Newdd(x0_3, df1_1, df1_2, df2_1, df2_2, f1, f2, k)
    

    Broyden方法:

    function [x, k] = Broyden_I(x0, A, f1, f2, k)
        for i = 1 : k
           x1 = x0 - inv(A) * F(f1, f2, x0);
           r = x1 - x0;
           tri = F(f1, f2,x1) - F(f1, f2, x0);
           A = A + ((tri - A * r) * r') / (r' * r);
           x0 = x1;
        end
        x = x1;
    end
    

    About the code:

    • f1 : the input handle of Function F
    • f2 : the input handle of Function F
    • x0 : the input guess of x
    • x : the output x of Ax = b
    • k : calculation times

    例子:

    clear all
    clc
    
    x0 = [1; 1];
    A = eye(2);
    
    % (a)
    f1 = @(u, v) u^2+v^2-1;
    f2 = @(u, v) (u-1)^2+v^2-1;
    x_ans = [0.5; (3^0.5)/2];
    [xa, ka] = Broyden_I(x0, A, f1, f2, 9);xa
    norm(xa - x_ans, Inf)
    
    % (b)
    f1 = @(u, v) u^2+4*v^4-4;
    f2 = @(u, v) 4*u^2+v^2-4;
    x_ans = [2/(5^0.5); 2/(5^0.5)];
    [xb, kb] = Broyden_I(x0, A, f1, f2, 9);xb
    norm(xb - x_ans, Inf)
    
    % (c)
    f1 = @(u, v) u^2-4*v^2-4;
    f2 = @(u, v) (u-1)^2+v^2-4;
    x_ans = [4*(1+6^0.5)/5; ((3+8*6^0.5)^0.5)/5];
    [xc, kc] = Broyden_I(x0, A, f1, f2, 10);xc
    norm(xc - x_ans, Inf)
    
  • 相关阅读:
    XAF应用开发教程(七)外观控制模块
    XAF应用开发教程(五)验证模块
    XAF应用开发教程(六)控制器
    XAF应用开发教程(四)应用程序模型
    XAF应用开发教程(三)业务对象模型之引用类型与关联关系
    XAF应用开发教程(二)业务对象模型之简单类型属性
    XAF应用开发教程(一) 创建项目
    CSharp Similarities and Differences
    Nemerle Quick Guide
    2.1 确知信号的类型
  • 原文地址:https://www.cnblogs.com/wsine/p/4634548.html
Copyright © 2020-2023  润新知