题意:
N堆石子摆成一条线。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。
n<=100
思路:
dp[i][j]表示以i开头,长度为j的石子合并的答案
dp[i][j] = min(dp[i][k] + dp[i+k][j-k], dp[i][j] + sum(i,i+j-1));
代码:
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<string> #include<stack> #include<queue> #include<deque> #include<set> #include<vector> #include<map> #include<functional> #include<list> #define fst first #define sc second #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define lc root<<1 #define rc root<<1|1 #define lowbit(x) ((x)&(-x)) using namespace std; typedef double db; typedef long double ldb; typedef long long ll; typedef long long LL; typedef unsigned long long ull; typedef pair<int,int> PI; typedef pair<ll,ll> PLL; const db eps = 1e-6; const int mod = 1e9+7; const int maxn = 2e6+100; const int maxm = 2e6+100; const int inf = 0x3f3f3f3f; //const db pi = acos(-1.0); const int N = maxn; int n; int dp[100][100]; int a[maxn]; int s[maxn]; int main(){ int n; scanf("%d", &n); mem(dp,inf); for(int i = 1; i <= n; i++){ scanf("%d", &a[i]); dp[i][1] = 0; s[i] = s[i-1]+a[i]; } for(int j = 1; j <= n; j++){ for(int i = 1; i+j-1 <= n; i++){ for(int k = 1; k < j; k++){ dp[i][j] = min(dp[i][j], dp[i][k] + dp[i+k][j-k]+s[i+j-1]-s[i-1]); } //printf("%d %d %d ",i,j,dp[i][j]); } } printf("%d",dp[1][n]); return 0; } /*` 10 59 -17 5 67 87 50 -71 54 27 -10 */