铸造厂需要传统的CMOS制造中不使用的新设备,例如离子束蚀刻,同时提高MTJ位单元的可靠性,以支持某些应用所需的大(1Mbit〜256Mbit)存储器阵列密度。
尽管STT-MRAM技术具有足够的耐久性和读/写等待时间,但对工艺变化的敏感性可能会导致可靠性问题。MTJ位单元的缺点之一是读取窗口小,即高阻状态和低阻状态之间的差异通常仅为2-3倍。结果感测MTJ位单元的值比sram位单元困难得多。
STT切换是一个随机过程。这意味着减少写电流可提高能效,但会增加写错误的可能性,并降低良率。为了达到可接受的良率并保持现场可靠性,设计人员需要实施复杂的ECC解决方案。仅依靠冗余元素(例如额外的行或列)会导致较高的面积开销,并降低MRAM的密度优势。因此与传统的CMOS存储器技术不同,ECC和冗余机制的组合是克服MRAM的独特随机性和工艺变化相关制造挑战的最佳方法。
ECC数学表明,要达到一定的芯片故障率(CFR),代工厂必须达到的存储器位故障率(BFR)在更大的阵列尺寸下变得越来越严格。假设对于64Mb存储器阵列大小存在随机缺陷,针对最严格的汽车ASIL-D级别(相当于SoC级别FIT率为10)的应用程序至少需要DECTED(双错误纠正,三错误检测)级别的ECC,如今,MTJ位单元的代工厂所能达到的BFR水平。虽然ECC方案可以更加宽松(例如SECDED-单错误纠正,双错误检测)以用于消费类应用和/或较小的阵列尺寸,但是较大的阵列尺寸将需要更加复杂的ECC机制来满足可接受的有缺陷零件的总体水平最终用户的每百万(DPPM)。
可纠正错误的类型/ ECC方案 | 封存 | 决定 |
一个软错误或一个硬错误 | 是 | 是 |
两个硬错误 | 没有 | 是 |
一个软错误和一个硬错误 | 没有 | 是 |
两个软错误 | 没有 | 是 |
表1:ECC方案比较
为了最大程度地提高制造良率,存储器BIST解决方案必须在存储器阵列中利用额外的冗余元件,并提供复杂的ECC解决方案(支持DECTED)以保护芯片上更大的MRAM。