• Apache Dubbo负载均衡策略源码


    1、Random LoadBalance

             1.1  随机,按权重设置随机概率。

             1.2  在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

             1.3  源码分析

    public class RandomLoadBalance extends AbstractLoadBalance {
    
        public static final String NAME = "random";
    
        /**
         * Select one invoker between a list using a random criteria
         * @param invokers List of possible invokers
         * @param url URL
         * @param invocation Invocation
         * @param <T>
         * @return The selected invoker
         */
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            // Number of invokers
            int length = invokers.size();
            // Every invoker has the same weight?
            boolean sameWeight = true;
            // the weight of every invokers
            int[] weights = new int[length];
            // the first invoker's weight
            int firstWeight = getWeight(invokers.get(0), invocation);
            weights[0] = firstWeight;
            // The sum of weights
            int totalWeight = firstWeight;
            for (int i = 1; i < length; i++) {
                int weight = getWeight(invokers.get(i), invocation);
                // save for later use
                weights[i] = weight;
                // Sum
                totalWeight += weight;
                if (sameWeight && weight != firstWeight) {
                    sameWeight = false;
                }
            }
            if (totalWeight > 0 && !sameWeight) {
                // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
                int offset = ThreadLocalRandom.current().nextInt(totalWeight);
                // Return a invoker based on the random value.
                for (int i = 0; i < length; i++) {
                    offset -= weights[i];
                    if (offset < 0) {
                        return invokers.get(i);
                    }
                }
            }
            // If all invokers have the same weight value or totalWeight=0, return evenly.
            return invokers.get(ThreadLocalRandom.current().nextInt(length));
        }
    
    }

    说明:从源码可以看出随机负载均衡的策略分为两种情况

             a. 如果总权重大于0并且权重不相同,就生成一个1~totalWeight(总权重数)的随机数,然后再把随机数和所有的权重值一一相减得到一个新的随机数,直到随机 数小于0,那么此时访问的服务器就是使得随机数小于0的权重所在的机器

             b.  如果权重相同或者总权重数为0,就生成一个1~length(权重的总个数)的随机数,此时所访问的机器就是这个随机数对应的权重所在的机器

    2、RoundRobin LoadBalance

          2.1 轮循,按公约后的权重设置轮循比率。

          2.2 存在慢的提供者累积请求的问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

          2.3 源码分析

    /**
     * Round robin load balance.
     */
    public class RoundRobinLoadBalance extends AbstractLoadBalance {
        public static final String NAME = "roundrobin";
    
        private static final int RECYCLE_PERIOD = 60000;
    
        protected static class WeightedRoundRobin {
            private int weight;
            private AtomicLong current = new AtomicLong(0);
            private long lastUpdate;
    
            public int getWeight() {
                return weight;
            }
    
            public void setWeight(int weight) {
                this.weight = weight;
                current.set(0);
            }
    
            public long increaseCurrent() {
                return current.addAndGet(weight);
            }
    
            public void sel(int total) {
                current.addAndGet(-1 * total);
            }
    
            public long getLastUpdate() {
                return lastUpdate;
            }
    
            public void setLastUpdate(long lastUpdate) {
                this.lastUpdate = lastUpdate;
            }
        }
    
        private ConcurrentMap<String, ConcurrentMap<String, WeightedRoundRobin>> methodWeightMap = new ConcurrentHashMap<String, ConcurrentMap<String, WeightedRoundRobin>>();
    
        /**
         * get invoker addr list cached for specified invocation
         * <p>
         * <b>for unit test only</b>
         *
         * @param invokers
         * @param invocation
         * @return
         */
        protected <T> Collection<String> getInvokerAddrList(List<Invoker<T>> invokers, Invocation invocation) {
            String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
            Map<String, WeightedRoundRobin> map = methodWeightMap.get(key);
            if (map != null) {
                return map.keySet();
            }
            return null;
        }
    
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
            ConcurrentMap<String, WeightedRoundRobin> map = methodWeightMap.computeIfAbsent(key, k -> new ConcurrentHashMap<>());
            int totalWeight = 0;
            long maxCurrent = Long.MIN_VALUE;
            long now = System.currentTimeMillis();
            Invoker<T> selectedInvoker = null;
            WeightedRoundRobin selectedWRR = null;
            for (Invoker<T> invoker : invokers) {
                String identifyString = invoker.getUrl().toIdentityString();
                int weight = getWeight(invoker, invocation);
                WeightedRoundRobin weightedRoundRobin = map.computeIfAbsent(identifyString, k -> {
                    WeightedRoundRobin wrr = new WeightedRoundRobin();
                    wrr.setWeight(weight);
                    return wrr;
                });
    
                if (weight != weightedRoundRobin.getWeight()) {
                    //weight changed
                    weightedRoundRobin.setWeight(weight);
                }
                long cur = weightedRoundRobin.increaseCurrent();
                weightedRoundRobin.setLastUpdate(now);
                if (cur > maxCurrent) {
                    maxCurrent = cur;
                    selectedInvoker = invoker;
                    selectedWRR = weightedRoundRobin;
                }
                totalWeight += weight;
            }
            if (invokers.size() != map.size()) {
                map.entrySet().removeIf(item -> now - item.getValue().getLastUpdate() > RECYCLE_PERIOD);
            }
            if (selectedInvoker != null) {
                selectedWRR.sel(totalWeight);
                return selectedInvoker;
            }
            // should not happen here
            return invokers.get(0);
        }
    
    }

     说明:从源码可以看出轮循负载均衡的算法是:

                     a.  如果权重不一样时,获取一个当前的权重基数,然后从权重集合中筛选权重大于当前权重基数的集合,如果筛选出的集合的长度为1,此时所访问的机器就是集合里面的权重对应的机器

                     b.  如果权重一样时就取模轮循

    3、LeastActive LoadBalance

            3.1 最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差(调用前的时刻减去响应后的时刻的值)。

            3.2 使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大

            3.3 对应的源码

    public class LeastActiveLoadBalance extends AbstractLoadBalance {
    
        public static final String NAME = "leastactive";
    
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            // Number of invokers
            int length = invokers.size();
            // The least active value of all invokers
            int leastActive = -1;
            // The number of invokers having the same least active value (leastActive)
            int leastCount = 0;
            // The index of invokers having the same least active value (leastActive)
            int[] leastIndexes = new int[length];
            // the weight of every invokers
            int[] weights = new int[length];
            // The sum of the warmup weights of all the least active invokers
            int totalWeight = 0;
            // The weight of the first least active invoker
            int firstWeight = 0;
            // Every least active invoker has the same weight value?
            boolean sameWeight = true;
    
    
            // Filter out all the least active invokers
            for (int i = 0; i < length; i++) {
                Invoker<T> invoker = invokers.get(i);
                // Get the active number of the invoker
                int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive();
                // Get the weight of the invoker's configuration. The default value is 100.
                int afterWarmup = getWeight(invoker, invocation);
                // save for later use
                weights[i] = afterWarmup;
                // If it is the first invoker or the active number of the invoker is less than the current least active number
                if (leastActive == -1 || active < leastActive) {
                    // Reset the active number of the current invoker to the least active number
                    leastActive = active;
                    // Reset the number of least active invokers
                    leastCount = 1;
                    // Put the first least active invoker first in leastIndexes
                    leastIndexes[0] = i;
                    // Reset totalWeight
                    totalWeight = afterWarmup;
                    // Record the weight the first least active invoker
                    firstWeight = afterWarmup;
                    // Each invoke has the same weight (only one invoker here)
                    sameWeight = true;
                    // If current invoker's active value equals with leaseActive, then accumulating.
                } else if (active == leastActive) {
                    // Record the index of the least active invoker in leastIndexes order
                    leastIndexes[leastCount++] = i;
                    // Accumulate the total weight of the least active invoker
                    totalWeight += afterWarmup;
                    // If every invoker has the same weight?
                    if (sameWeight && afterWarmup != firstWeight) {
                        sameWeight = false;
                    }
                }
            }
            // Choose an invoker from all the least active invokers
            if (leastCount == 1) {
                // If we got exactly one invoker having the least active value, return this invoker directly.
                return invokers.get(leastIndexes[0]);
            }
            if (!sameWeight && totalWeight > 0) {
                // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on 
                // totalWeight.
                int offsetWeight = ThreadLocalRandom.current().nextInt(totalWeight);
                // Return a invoker based on the random value.
                for (int i = 0; i < leastCount; i++) {
                    int leastIndex = leastIndexes[i];
                    offsetWeight -= weights[leastIndex];
                    if (offsetWeight < 0) {
                        return invokers.get(leastIndex);
                    }
                }
            }
            // If all invokers have the same weight value or totalWeight=0, return evenly.
            return invokers.get(leastIndexes[ThreadLocalRandom.current().nextInt(leastCount)]);
        }
    }

     4、ConsistentHash LoadBalance

           4.1 一致性 Hash,相同参数的请求总是发到同一提供者。

           4.2 当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。

           4.3 缺省只对第一个参数 Hash,如果要修改,请配置 <dubbo:parameter key="hash.arguments" value="0,1" />

           4.4 缺省用 160 份虚拟节点,如果要修改,请配置 <dubbo:parameter key="hash.nodes" value="320" />

           4.5 源码分析

    /**
     * ConsistentHashLoadBalance
     */
    public class ConsistentHashLoadBalance extends AbstractLoadBalance {
        public static final String NAME = "consistenthash";
    
        /**
         * Hash nodes name
         */
        public static final String HASH_NODES = "hash.nodes";
    
        /**
         * Hash arguments name
         */
        public static final String HASH_ARGUMENTS = "hash.arguments";
    
        private final ConcurrentMap<String, ConsistentHashSelector<?>> selectors = new ConcurrentHashMap<String, ConsistentHashSelector<?>>();
    
        @SuppressWarnings("unchecked")
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            String methodName = RpcUtils.getMethodName(invocation);
            String key = invokers.get(0).getUrl().getServiceKey() + "." + methodName;
            // using the hashcode of list to compute the hash only pay attention to the elements in the list
            int invokersHashCode = invokers.hashCode();
            ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
            if (selector == null || selector.identityHashCode != invokersHashCode) {
                selectors.put(key, new ConsistentHashSelector<T>(invokers, methodName, invokersHashCode));
                selector = (ConsistentHashSelector<T>) selectors.get(key);
            }
            return selector.select(invocation);
        }
    
        private static final class ConsistentHashSelector<T> {
    
            private final TreeMap<Long, Invoker<T>> virtualInvokers;
    
            private final int replicaNumber;
    
            private final int identityHashCode;
    
            private final int[] argumentIndex;
    
            ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
                this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
                this.identityHashCode = identityHashCode;
                URL url = invokers.get(0).getUrl();
                this.replicaNumber = url.getMethodParameter(methodName, HASH_NODES, 160);
                String[] index = COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, HASH_ARGUMENTS, "0"));
                argumentIndex = new int[index.length];
                for (int i = 0; i < index.length; i++) {
                    argumentIndex[i] = Integer.parseInt(index[i]);
                }
                for (Invoker<T> invoker : invokers) {
                    String address = invoker.getUrl().getAddress();
                    for (int i = 0; i < replicaNumber / 4; i++) {
                        byte[] digest = md5(address + i);
                        for (int h = 0; h < 4; h++) {
                            long m = hash(digest, h);
                            virtualInvokers.put(m, invoker);
                        }
                    }
                }
            }
    
            public Invoker<T> select(Invocation invocation) {
                String key = toKey(invocation.getArguments());
                byte[] digest = md5(key);
                return selectForKey(hash(digest, 0));
            }
    
            private String toKey(Object[] args) {
                StringBuilder buf = new StringBuilder();
                for (int i : argumentIndex) {
                    if (i >= 0 && i < args.length) {
                        buf.append(args[i]);
                    }
                }
                return buf.toString();
            }
    
            private Invoker<T> selectForKey(long hash) {
                Map.Entry<Long, Invoker<T>> entry = virtualInvokers.ceilingEntry(hash);
                if (entry == null) {
                    entry = virtualInvokers.firstEntry();
                }
                return entry.getValue();
            }
    
            private long hash(byte[] digest, int number) {
                return (((long) (digest[3 + number * 4] & 0xFF) << 24)
                        | ((long) (digest[2 + number * 4] & 0xFF) << 16)
                        | ((long) (digest[1 + number * 4] & 0xFF) << 8)
                        | (digest[number * 4] & 0xFF))
                        & 0xFFFFFFFFL;
            }
    
            private byte[] md5(String value) {
                MessageDigest md5;
                try {
                    md5 = MessageDigest.getInstance("MD5");
                } catch (NoSuchAlgorithmException e) {
                    throw new IllegalStateException(e.getMessage(), e);
                }
                md5.reset();
                byte[] bytes = value.getBytes(StandardCharsets.UTF_8);
                md5.update(bytes);
                return md5.digest();
            }
    
        }
    
    }

    说明:根据传递的参数进行hash然后调用服务,如果两次传递的参数一样就调用的是同一个机器上的服务

    现在人工智能非常火爆,很多朋友都想学,但是一般的教程都是为博硕生准备的,太难看懂了。最近发现了一个非常适合小白入门的教程,不仅通俗易懂而且还很风趣幽默。所以忍不住分享一下给大家

  • 相关阅读:
    JavaScript constructor prototyoe
    bootstrap固定响应式导航
    跨浏览器事件处理程序
    原生JS实现字符串分割
    关于css里的class和id
    js动态创建表格方法
    关于css的默认宽度
    js字符串大小写转换
    C++类的一个重要成员:静态成员(二)——静态成员的定义
    C++ 类的一个重要成员:静态成员(一)
  • 原文地址:https://www.cnblogs.com/wqsbk/p/13565627.html
Copyright © 2020-2023  润新知