• dubbo——负载均衡


    dubbo提供四种负载均衡策略:随机、轮询、最少活动、一致性hash

    一、RandomLoadBalance——随机

        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            // Number of invokers
            int length = invokers.size();
            // Every invoker has the same weight?
            boolean sameWeight = true;
            // the weight of every invokers
            int[] weights = new int[length];
            // the first invoker's weight
            int firstWeight = getWeight(invokers.get(0), invocation);
            weights[0] = firstWeight;
            // The sum of weights
            int totalWeight = firstWeight;
            for (int i = 1; i < length; i++) {
                int weight = getWeight(invokers.get(i), invocation);
                // save for later use
                weights[i] = weight;
                // Sum
                totalWeight += weight;
                if (sameWeight && weight != firstWeight) {
                    sameWeight = false;
                }
            }
            //有权重,按权重随机
            if (totalWeight > 0 && !sameWeight) {
                // 0——totalweight(不包含)中随机一个数
                int offset = ThreadLocalRandom.current().nextInt(totalWeight);
                // 返回随机数对应数组的invoker
                for (int i = 0; i < length; i++) {
                    offset -= weights[i];
                    if (offset < 0) {
                        return invokers.get(i);
                    }
                }
            }
            // 所有节点权重相等或为0,从数组中随机返回一个invoker
            return invokers.get(ThreadLocalRandom.current().nextInt(length));
        }

    总结:

    随机负载均衡:根据每个节点权重,进行随机(使用ThreadLocalRandom保证线程安全),具体分为了两种情况:

    1、每个节点权重相同,随机返回一个invoker。

    2、权重不相同,根据总权重生成一个随机数,然后判断随机数所处区间,返回对应的invoker。

    栗子:3个节点A、B、C权重分别为1、2 、3,取0-6(不包含)中一个随机数n,n-1<0位于A节点,否则n-1-2<0位于B节点,否则n-1-2-3<0位于C节点。

    特点:少量请求,可能会发生倾斜,当请求变多时,趋向均衡。

    二、RoundRobinLoadBalance——轮询

    protected static class WeightedRoundRobin {
            private int weight;
            private AtomicLong current = new AtomicLong(0);
            private long lastUpdate;
            public int getWeight() {
                return weight;
            }
            public void setWeight(int weight) {
                this.weight = weight;
                current.set(0);
            }
            public long increaseCurrent() {
                return current.addAndGet(weight);
            }
            public void sel(int total) {
                current.addAndGet(-1 * total);
            }
            public long getLastUpdate() {
                return lastUpdate;
            }
            public void setLastUpdate(long lastUpdate) {
                this.lastUpdate = lastUpdate;
            }
        }
    
        private ConcurrentMap<String, ConcurrentMap<String, WeightedRoundRobin>> methodWeightMap = new ConcurrentHashMap<String, ConcurrentMap<String, WeightedRoundRobin>>();
        private AtomicBoolean updateLock = new AtomicBoolean();
        
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
            //建立容器,以方法为单位,记录每个节点的权重(支持动态权重),原子变量current(用于实现轮询)
            ConcurrentMap<String, WeightedRoundRobin> map = methodWeightMap.computeIfAbsent(key, k -> new ConcurrentHashMap<>());
            int totalWeight = 0;
            long maxCurrent = Long.MIN_VALUE;
            long now = System.currentTimeMillis();
            Invoker<T> selectedInvoker = null;
            WeightedRoundRobin selectedWRR = null;
            for (Invoker<T> invoker : invokers) {
                String identifyString = invoker.getUrl().toIdentityString();
                int weight = getWeight(invoker, invocation);
                WeightedRoundRobin weightedRoundRobin = map.get(identifyString);
    
                if (weightedRoundRobin == null) {
                    weightedRoundRobin = new WeightedRoundRobin();
                    weightedRoundRobin.setWeight(weight);
                    map.putIfAbsent(identifyString, weightedRoundRobin);
                    weightedRoundRobin = map.get(identifyString);
                }
                if (weight != weightedRoundRobin.getWeight()) {
                    //weight changed
                    weightedRoundRobin.setWeight(weight);
                }
                //current.addAndGet(weight) , 选中current最大的节点,然后current.addAndGet(-totalWeight)
                //这里实现轮询的逻辑有点看不懂
                long cur = weightedRoundRobin.increaseCurrent();
                weightedRoundRobin.setLastUpdate(now);
                if (cur > maxCurrent) {
                    maxCurrent = cur;
                    selectedInvoker = invoker;
                    selectedWRR = weightedRoundRobin;
                }
                totalWeight += weight;
            }
            if (!updateLock.get() && invokers.size() != map.size()) {
                if (updateLock.compareAndSet(false, true)) {
                    try {
                        // 写时复制策略
                        ConcurrentMap<String, WeightedRoundRobin> newMap = new ConcurrentHashMap<>(map);
                        // 解决倾斜,invoker超过60s未调用,提高优先级
                        newMap.entrySet().removeIf(item -> now - item.getValue().getLastUpdate() > RECYCLE_PERIOD);
                        methodWeightMap.put(key, newMap);
                    } finally {
                        updateLock.set(false);
                    }
                }
            }
            if (selectedInvoker != null) {
                selectedWRR.sel(totalWeight);
                return selectedInvoker;
            }
            // should not happen here
            return invokers.get(0);
        }

    新版的轮询逻辑有点看不懂:举个栗子,有三个节点,权重为1 2 3

    000-->123(选中③后12-3)-->240(选中②后2-20)-->303(选中①后-303)-->-226(选中③后-220)-->-143(选中②后-1-23)-->006(选中③后000)之后循环。

    调用顺序:③②①③②③,然后循环。

    轮询模式存在响应慢的提供者会累积请求的问题。

    三、LeastActiveLoadBalance——最少活跃

    /* org.apache.dubbo.rpc.cluster.loadbalance.LeastActiveLoadBalance#doSelect */
    public class LeastActiveLoadBalance extends AbstractLoadBalance {
    
        public static final String NAME = "leastactive";
    
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            // Number of invokers
            int length = invokers.size();
            // The least active value of all invokers
            int leastActive = -1;
            // The number of invokers having the same least active value (leastActive)
            int leastCount = 0;
            // The index of invokers having the same least active value (leastActive)
            int[] leastIndexes = new int[length];
            // the weight of every invokers
            int[] weights = new int[length];
            // The sum of the warmup weights of all the least active invokers
            int totalWeight = 0;
            // The weight of the first least active invoker
            int firstWeight = 0;
            // Every least active invoker has the same weight value?
            boolean sameWeight = true;
    
    
            //筛选出最不活跃的节点,
            //给每个节点方法创建一个RpcStatus实例,用于记录节点方法活跃性Map<url,<methodName,rpcStatus>>
            //找到最小活跃的节点,将它的数组下标,放入数组leastIndexes中
            //leastIndexes大小为1时,最小活跃节点仅一个,直接返回
            //leastIndexes大小大于1时,最小活跃节点多个,然后用Random类似方法,从多个最小活跃节点中,随机返回一个节点
            //所有节点活跃性相同时,Random随机返回一个节点
            for (int i = 0; i < length; i++) {
                Invoker<T> invoker = invokers.get(i);
                // Get the active number of the invoker
                int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive();
                // Get the weight of the invoker's configuration. The default value is 100.
                int afterWarmup = getWeight(invoker, invocation);
                // save for later use
                weights[i] = afterWarmup;
                // If it is the first invoker or the active number of the invoker is less than the current least active number
                if (leastActive == -1 || active < leastActive) {
                    // Reset the active number of the current invoker to the least active number
                    leastActive = active;
                    // Reset the number of least active invokers
                    leastCount = 1;
                    // Put the first least active invoker first in leastIndexes
                    leastIndexes[0] = i;
                    // Reset totalWeight
                    totalWeight = afterWarmup;
                    // Record the weight the first least active invoker
                    firstWeight = afterWarmup;
                    // Each invoke has the same weight (only one invoker here)
                    sameWeight = true;
                    // If current invoker's active value equals with leaseActive, then accumulating.
                } else if (active == leastActive) {
                    // Record the index of the least active invoker in leastIndexes order
                    leastIndexes[leastCount++] = i;
                    // Accumulate the total weight of the least active invoker
                    totalWeight += afterWarmup;
                    // If every invoker has the same weight?
                    if (sameWeight && i > 0
                            && afterWarmup != firstWeight) {
                        sameWeight = false;
                    }
                }
            }
            // Choose an invoker from all the least active invokers
            if (leastCount == 1) {
                // If we got exactly one invoker having the least active value, return this invoker directly.
                return invokers.get(leastIndexes[0]);
            }
            if (!sameWeight && totalWeight > 0) {
                // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on 
                // totalWeight.
                int offsetWeight = ThreadLocalRandom.current().nextInt(totalWeight);
                // Return a invoker based on the random value.
                for (int i = 0; i < leastCount; i++) {
                    int leastIndex = leastIndexes[i];
                    offsetWeight -= weights[leastIndex];
                    if (offsetWeight < 0) {
                        return invokers.get(leastIndex);
                    }
                }
            }
            // If all invokers have the same weight value or totalWeight=0, return evenly.
            return invokers.get(leastIndexes[ThreadLocalRandom.current().nextInt(leastCount)]);
        }

    总结:

    最少活跃负载均衡指的是响应慢的提供者收到更少的请求,如果活跃性相同,跟Random负载均衡一致。

    活跃数指的是方法调用前后的计数差,是一个简单的计数器,调用前+1,调用后-1,当某节点响应慢时,单位时间-1比较慢,活跃数就比较大。这个时候会请求那些活跃数小的,响应快的应用。

    四、ConsistentHashLoadBalance——一致性Hash

    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            String methodName = RpcUtils.getMethodName(invocation);
            //key = group+interface+version+methodName
            String key = invokers.get(0).getUrl().getServiceKey() + "." + methodName;
            // using the hashcode of list to compute the hash only pay attention to the elements in the list
            int invokersHashCode = invokers.hashCode();
            //为每个key创建一个选择器(实际就是一个方法对应一个选择器)
            //<group.interface.version.method,consistentHashSelector>
            ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
            if (selector == null || selector.identityHashCode != invokersHashCode) {
                //① selector为空时创建
                //② 原语节点更改,导致invokers.hashCode变动,重新分配
                selectors.put(key, new ConsistentHashSelector<T>(invokers, methodName, invokersHashCode));
                selector = (ConsistentHashSelector<T>) selectors.get(key);
            }
            //选择器选择合适的节点
            return selector.select(invocation);
        }
    
        private static final class ConsistentHashSelector<T> {
    
            private final TreeMap<Long, Invoker<T>> virtualInvokers;
    
            private final int replicaNumber;
    
            private final int identityHashCode;
    
            private final int[] argumentIndex;
    
            ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
                this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
                this.identityHashCode = identityHashCode;
                URL url = invokers.get(0).getUrl();
                //默认160个槽位,<dubbo:parameter key="hash.codes" value="160" />
                this.replicaNumber = url.getMethodParameter(methodName, HASH_NODES, 160);
                //默认只对方法第一个参数去hash,<dubbo:parameter key="hash.arguments" value="0" />
                String[] index = COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, HASH_ARGUMENTS, "0"));
                argumentIndex = new int[index.length];
                for (int i = 0; i < index.length; i++) {
                    argumentIndex[i] = Integer.parseInt(index[i]);
                }
                //① 根据address+replica+h确定invoker的<key,invoker>,与其他invoker的属性无关,所以其他invoker挂掉,<key,invoker>不变
                //② 为了解决数据倾斜问题dubbo默认160个虚拟节点是每个invoker都有160个虚拟节点,即一致性hash上会有160*invokers.size个服务节点
                for (Invoker<T> invoker : invokers) {
                    String address = invoker.getUrl().getAddress();
                    for (int i = 0; i < replicaNumber / 4; i++) {
                        byte[] digest = md5(address + i);
                        for (int h = 0; h < 4; h++) {
                            long m = hash(digest, h);
                            virtualInvokers.put(m, invoker);
                        }
                    }
                }
            }
    
            public Invoker<T> select(Invocation invocation) {
                //默认去方法的第一个参数
                String key = toKey(invocation.getArguments());
                //求得参数的md5值
                byte[] digest = md5(key);
                //根据第一个参数md5找到对应的invoker
                return selectForKey(hash(digest, 0));
            }
    
            private String toKey(Object[] args) {
                StringBuilder buf = new StringBuilder();
                for (int i : argumentIndex) {
                    if (i >= 0 && i < args.length) {
                        buf.append(args[i]);
                    }
                }
                return buf.toString();
            }
    
            private Invoker<T> selectForKey(long hash) {
                //一致性hash的实现:hash对应的下一个节点
                //例如TreeMap现在有节点  3、6、9
                //hash=1时取TreeMap.get(3)
                //hash=3时取TreeMap.get(3)
                //hash=4时取TreeMap.get(6)
                //dubbo会有160*invokers.size个服务节点(value对应实际的invoker)
                Map.Entry<Long, Invoker<T>> entry = virtualInvokers.ceilingEntry(hash);
                if (entry == null) {
                    entry = virtualInvokers.firstEntry();
                }
                return entry.getValue();
            }
    
            //CRC24生成hash值??
            private long hash(byte[] digest, int number) {
                return (((long) (digest[3 + number * 4] & 0xFF) << 24)
                        | ((long) (digest[2 + number * 4] & 0xFF) << 16)
                        | ((long) (digest[1 + number * 4] & 0xFF) << 8)
                        | (digest[number * 4] & 0xFF))
                        & 0xFFFFFFFFL;
            }
    
            //md5加密:将参数转化一个byte数组
            private byte[] md5(String value) {
                MessageDigest md5;
                try {
                    md5 = MessageDigest.getInstance("MD5");
                } catch (NoSuchAlgorithmException e) {
                    throw new IllegalStateException(e.getMessage(), e);
                }
                md5.reset();
                byte[] bytes = value.getBytes(StandardCharsets.UTF_8);
                md5.update(bytes);
                return md5.digest();
            }
    
        }

    总结:

    一致性Hash负载均衡:是将带有相同参数(默认方法的第一个参数)的请求总是发送给同一个提供者。当某台提供者挂掉时,原本发往该提供者的请求会基于虚拟节点(默认160个)平摊到其他提供者上(具体就是挂点虚拟节点的下一个节点),不会引起剧烈变动

    五、预热处理——getWeight()

    权重处理主要有一个机器预热处理:越热时间内,根据 运行时间/预热时间 的值控制权重。

    /* org.apache.dubbo.rpc.cluster.loadbalance.AbstractLoadBalance */
        int getWeight(Invoker<?> invoker, Invocation invocation) {
            int weight;
            URL url = invoker.getUrl();
            // Multiple registry scenario, load balance among multiple registries.
            if (REGISTRY_SERVICE_REFERENCE_PATH.equals(url.getServiceInterface())) {
                weight = url.getParameter(REGISTRY_KEY + "." + WEIGHT_KEY, DEFAULT_WEIGHT);
            } else {
                weight = url.getMethodParameter(invocation.getMethodName(), WEIGHT_KEY, DEFAULT_WEIGHT);
                if (weight > 0) {
                    long timestamp = invoker.getUrl().getParameter(TIMESTAMP_KEY, 0L);
                    if (timestamp > 0L) {
                        long uptime = System.currentTimeMillis() - timestamp;
                        if (uptime < 0) {
                            return 1;
                        }
                        //获取预热时间,默认10分钟
                        int warmup = invoker.getUrl().getParameter(WARMUP_KEY, DEFAULT_WARMUP);
                        if (uptime > 0 && uptime < warmup) {
                            //预热时间内,降低权重,避免刚启动,请求负载导致启动失败
                            weight = calculateWarmupWeight((int)uptime, warmup, weight);
                        }
                    }
                }
            }
            return Math.max(weight, 0);
        }
    
        static int calculateWarmupWeight(int uptime, int warmup, int weight) {
            int ww = (int) ( uptime / ((float) warmup / weight)); //uptime/warmup * weight,与uptime成正比
            return ww < 1 ? 1 : (Math.min(ww, weight));
        }

     六、负载均衡的配置方法

    默认random,

    <!-- 接口层面,下面配置一个就可以生效 -->
    <dubbo:service interface="..." loadbalance="roundrobin" />
    <dubbo:reference interface="..." loadbalance="roundrobin" />
    <!-- 方法层面,下面配置一个就可以生效 -->
    <dubbo:service interface="...">
        <dubbo:method name="..." loadbalance="roundrobin" />
    </dubbo:service>
    <dubbo:reference interface="...">
        <dubbo:method name="..." loadbalance="roundrobin" />
    </dubbo:reference>
  • 相关阅读:
    Java 中的 匿名类
    spring boot 中容器 Jetty、Tomcat、Undertow
    微信小程序-动态设置背景色navigationBarBackgroundColor的值
    vue el-tree:默认展开第几级节点
    safarai
    微信小程序-输入框输入文字后,将光标移到文字中间,接着输入文字后光标又自动跳到最后
    微信小程序-WebSocket应用
    微信小程序-聊天列表-角标
    SyntaxError: JSON.parse: unexpected character at line 1 column 1 of the JSON data错误的解决
    button 去掉原生边框
  • 原文地址:https://www.cnblogs.com/wqff-biubiu/p/12501555.html
Copyright © 2020-2023  润新知